scholarly journals Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings

2020 ◽  
Vol 64 ◽  
pp. 343-352
Author(s):  
A.A. YOUNIS ◽  
H. KHATTAB ◽  
M.M. EMAM
Author(s):  
O. E. Bradfute ◽  
R. E. Whitmoyer ◽  
L. R. Nault

A pathogen transmitted by the eriophyid mite, Aceria tulipae, infects a number of Gramineae producing symptoms similar to wheat spot mosaic virus (1). An electron microscope study of leaf ultrastructure from systemically infected Zea mays, Hordeum vulgare, and Triticum aestivum showed the presence of ovoid, double membrane bodies (0.1 - 0.2 microns) in the cytoplasm of parenchyma, phloem and epidermis cells (Fig. 1 ).


Author(s):  
K. S. Zaychuk ◽  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic (WSpM), which frequently occurs with wheat streak mosaic virus was first reported in 1956 from Alberta. Singly isolated, WSpM causes chlorotic spots, chlorosis, stunting, and sometimes death of the wheat plants. The vector responsible for transmission is the eriophyid mite, Eriophyes tulipae Kiefer. The examination of leaf ultrastructure by electron microscopy has revealed double membrane bound bodies (DMBB’s) 0.1-0.2 μm in diameter. Dispersed fibrils within these bodies suggested the presence of nucleic acid. However, neither ribosomes characteristic of bacteria, mycoplasma and the psittacosis group of organisms nor an electron dense core characteristic of many viruses was commonly evident.In an attempt to determine if the DMBB’s contain nucleic acids, RNase A, DNase I, and lactoferrin protein were conjugated with 10 nm colloidal gold as previously described. Young root and leaf tissues from WSpM-affected wheat plants were fixed in glutaraldehyde, postfixed in osmium tetroxide,and embedded in Spurr’s resin.


Author(s):  
Nariaki Fujimoto ◽  
Mutsumi Matsuu-Matsuyama ◽  
Masahiro Nakashima

2018 ◽  
Vol 96 (10) ◽  
pp. 27-34
Author(s):  
M. Musiienko ◽  
L. Batsmanova ◽  
Ju. Pys'menna ◽  
T. Kondratiuk ◽  
N. Taran ◽  
...  

Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 329-336
Author(s):  
A.R. Lubyanova ◽  
F.M. Shakirova ◽  
M.V. Bezrukova

We studied the immunohistochemical localization of abscisic acid (ABA), wheat germ agglutinin (WGA) and dehydrins in the roots of wheat seedlings (Triticum aestivum L.) during 24-epibrassinolide-pretreatment (EB-pretreatment) and PEG-induced dehydration. It was found coimmunolocalization of ABA, WGA and dehydrins in the cells of central cylinder of basal part untreated and EB-pretreated roots of wheat seedlings under normal conditions and under osmotic stress. Such mutual localization ABA and protective proteins, WGA and dehydrins, indicates the possible effect of their distribution in the tissues of EB-pretreated wheat roots during dehydration on the apoplastic barrier functioning, which apparently contributes to decrease the water loss under dehydration. Perhaps, the significant localization of ABA and wheat lectin in the metaxylem region enhances EB-induced transport of ABA and WGA from roots to shoots under stress. It can be assumed that brassinosteroids can serve as intermediates in the realization of the protective effect of WGA and wheat dehydrins during water deficit.


Author(s):  
O. I. Horielova ◽  
◽  
N. I. Ryabchun ◽  
M. A. Shkliarevskyi ◽  
A. M. Reznik ◽  
...  

Along with specific adaptive reactions, universal defense reactions, in particular activation of antioxidant system, are of great importance for plant survival under cold conditions. We have studied a relationship among the content of low-molecular-weight protective compounds with antioxidant properties (proline, soluble carbohydrates, flavonoids), the activity of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase) in seedlings of winter wheat, rye and triticale, and frost resistance of etiolated seedlings and adult plants at tillering stage. It was found that there was a fairly close correlation between the frost resistance of seedlings and adult cereal plants (r = 0,78). It was shown that a pronounced relationship between individual indicators of antioxidant system functioning in unhardened seedlings and their frost resistance was not found. After 6-day hardening of seedlings at 2-4°C, there was a high correlation between the total indicator of the enzymatic antioxidant system (the sum of normalized indicators of superoxide dismutase, peroxidase, and catalase activity) and their frost resistance (r = 0,86), but the correlation coefficient of this index with frost resistance of plants in tillering phase was significantly lower (r = 0,47). At the same time, a high correlation was found between the content of low-molecular-weight protectors in hardened seedlings and frost resistance of tillering adult plants (r = 0.89). The closest correlation was observed between the integral normalized indicator, comprising the sum of normalized values of antioxidant enzymes activity and the content of low-molecular-weight protectors in hardened seedlings, and frost resistance of seedlings (r = 0,94) and plants in tillering phase (r = 0,89). A presence of specific features in the functioning of antioxidant system during cold adaptation of cereal seedlings was established. Rye is characterized by a high content of low-molecular-weight protective compounds; at the same time, increased activity of antioxidant enzymes - superoxide dismutase and catalase - was noted in wheat seedlings. In triticale, depending on the genotype, the values of both enzymatic antioxidant activity and the content of low-molecular-weight protectors varied.


2013 ◽  
Vol 39 (7) ◽  
pp. 1319 ◽  
Author(s):  
Peng-Fei HOU ◽  
Jun-Qing MA ◽  
Peng-Fei ZHAO ◽  
Huan-Ling ZHANG ◽  
Hui-Jie ZHAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document