scholarly journals Virtual Machine Sizing in Virtualized Public Cloud Data Centres

Author(s):  
Kenga Mosoti Derdus ◽  
Vincent Oteke Omwenga ◽  
Patrick Job Ogao

Virtual machine (VM) consolidation in data centres is a technique that is used to ensure minimum use of physical servers (hosts) leading to better utilization of computing resources and energy savings. To achieve these goals, this technique requires that the estimated VM size is on the basis of application workload resource demands so as to maximize resources utilization, not only at host-level but also at VM-level. This is challenging especially in Infrastructure as a Service (IaaS) public clouds where customers select VM sizes set beforehand by the Cloud Service Providers (CSPs) without the knowledge of the amount of resources their applications need. More often, the resources are overprovisioned and thus go to waste, yet these resources consume power and are paid for by the customers. In this paper, we propose a technique for determining fixed VM sizes, which satisfy application workload resource demands. Because of the dynamic nature of cloud workloads, we show that any resource demands that exceed fixed VM resources can be addressed via statistical multiplexing. The proposed technique is evaluated using VM usage data obtained from a production data centre consisting of 49 hosts and 520 VMs. The evaluations show that the proposed technique reduces energy consumption, memory wastage and CPU wastage by at least 40%, 61% and 41% respectively.

The tradition of moving applications, data to be consumed by the applications and the data generated by the applications is increasing and the increase is due to the advantages of cloud computing. The advantages of cloud computing are catered to the application owners, application consumers and at the same time to the cloud datacentre owners or the cloud service providers also. Since IT tasks are vital for business progression, it for the most part incorporates repetitive or reinforcement segments and framework for power supply, data correspondences associations, natural controls and different security gadgets. An extensive data centre is a mechanical scale task utilizing as much power as a community. The primary advantage of pushing the applications on the cloud-based data centres are low infrastructure maintenance with significant cost reduction for the application owners and the high profitability for the data centre cloud service providers. During the application migration to the cloud data centres, the data and few components of the application become exposed to certain users. Also, the applications, which are hosted on the cloud data centres must comply with the certain standards for being accepted by various application consumers. In order to achieve the standard certifications, the applications and the data must be audited by various auditing companies. Few of the cases, the auditors are hired by the data centre owners and few of times, the auditors are engaged by application consumers. Nonetheless, in both situations, the auditors are third party and the risk of exposing business logics in the applications and the data always persists. Nevertheless, the auditor being a third-party user, the data exposure is a high risk. Also, in a data centre environment, it is highly difficult to ensure isolation of the data from different auditors, who may not be have the right to audit the data. Significant number of researches have attempted to provide a generic solution to this problem. However, the solutions are highly criticized by the research community for making generic assumptions during the permission verification process. Henceforth, this work produces a novel machine learning based algorithm to assign or grant audit access permissions to specific auditors in a random situation without other approvals based on the characteristics of the virtual machine, in which the application and the data is deployed, and the auditing user entity. The results of the proposed algorithm are highly satisfactory and demonstrates nearly 99% accuracy on data characteristics analysis, nearly 98% accuracy on user characteristics analysis and 100% accuracy on secure auditor selection process


Author(s):  
Kenga Mosoti Derdus ◽  
Vincent Oteke Omwenga ◽  
Patrick Job Ogao

Cloud computing has gained a lot of interest from both small and big academic and commercial organizations because of its success in delivering service on a pay-as-you-go basis. Moreover, many users (organizations) can share server computing resources, which is made possible by virtualization. However, the amount of energy consumed by cloud data centres is a major concern. One of the major causes of energy wastage is the inefficient utilization of resources. For instance, in IaaS public clouds, users select Virtual Machine (VM) sizes set beforehand by the Cloud Service Providers (CSPs) without the knowledge of the kind of workloads to be executed in the VM. More often, the users overprovision the resources, which go to waste. Additionally, the CSPs do not have control over the types of applications that are executed and thus VM consolidation is performed blindly. There have been efforts to address the problem of energy consumption by efficient resource utilization through VM allocation and migration. However, these techniques lack collection and analysis of active real cloud traces from the IaaS cloud. This paper proposes an architecture for VM consolidation through VM profiling and analysis of VM resource usage and resource usage patterns, and a VM allocation policy. We have implemented our policy on CloudSim Plus cloud simulator and results show that it outperforms Worst Fit, Best Fit and First Fit VM allocation algorithms. Energy consumption is reduced through efficient consolidation that is informed by VM resource consumption.


Author(s):  
Kenga Mosoti Derdus ◽  
Vincent Oteke Omwenga ◽  
Patrick Job Ogao

Datacenters are becoming the indispensable infrastructure for supporting the services offered by cloud computing. Unfortunately, datacenters consume a lot of energy, which currently stands at 3% of global electrical energy consumption. Consequently, cloud service providers (CSP) experience high operating costs (in terms of electricity bills), which is, in turn, passed to the cloud users. In addition, there is an increased emission of carbon dioxide to the environment. Before one embarks on addressing the problem of energy wastage in a datacenter, it is important to understand the causes of energy wastage in datacenter servers. In this paper, we elaborate on the concept of cloud computing and virtualization. Later, we present a survey of the main causes of energy wastage in datacenter servers as well as proposed solutions to address the problem.


2021 ◽  
Vol 50 (2) ◽  
pp. 332-341
Author(s):  
Seyed Yahya Zahedi Fard ◽  
Mohammad Karim Sohrabi ◽  
Vahid Ghods

With the expansion and enhancement of cloud data centers in recent years, increasing the energy consumptionand the costs of the users have become the major concerns in the cloud research area. Service quality parametersshould be guaranteed to meet the demands of the users of the cloud, to support cloud service providers,and to reduce the energy consumption of the data centers. Therefore, the data center's resources must be managedefficiently to improve energy utilization. Using the virtual machine (VM) consolidation technique is animportant approach to enhance energy utilization in cloud computing. Since users generally do not use all thepower of a VM, the VM consolidation technique on the physical server improves the energy consumption andresource efficiency of the physical server, and thus improves the quality of service (QoS). In this article, a serverthreshold prediction method is proposed that focuses on the server overload and server underload detectionto improve server utilization and to reduce the number of VM migrations, which consequently improves theVM's QoS. Since the VM integration problem is very complex, the exponential smoothing technique is utilizedfor predicting server utilization. The results of the experiments show that the proposed method goes beyondexisting methods in terms of power efficiency and the number of VM migrations.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qinlong Huang ◽  
Yue He ◽  
Wei Yue ◽  
Yixian Yang

Data collaboration in cloud computing is more and more popular nowadays, and proxy deployment schemes are employed to realize cross-cloud data collaboration. However, data security and privacy are the most serious issues that would raise great concerns from users when they adopt cloud systems to handle data collaboration. Different cryptographic techniques are deployed in different cloud service providers, which makes cross-cloud data collaboration to be a deeper challenge. In this paper, we propose an adaptive secure cross-cloud data collaboration scheme with identity-based cryptography (IBC) and proxy re-encryption (PRE) techniques. We first present a secure cross-cloud data collaboration framework, which protects data confidentiality with IBC technique and transfers the collaborated data in an encrypted form by deploying a proxy close to the clouds. We then provide an adaptive conditional PRE protocol with the designed full identity-based broadcast conditional PRE algorithm, which can achieve flexible and conditional data re-encryption among ciphertexts encrypted in identity-based encryption manner and ciphertexts encrypted in identity-based broadcast encryption manner. The extensive analysis and experimental evaluations demonstrate the well security and performance of our scheme, which meets the secure data collaboration requirements in cross-cloud scenarios.


Author(s):  
VINITHA S P ◽  
GURUPRASAD E

Cloud computing has been envisioned as the next generation architecture of IT enterprise. It moves the application software and databases to the centralized large data centers where management of data and services may not be fully trustworthy. This unique paradigm brings out many new security challenges like, maintaining correctness and integrity of data in cloud. Integrity of cloud data may be lost due to unauthorized access, modification or deletion of data. Lacking of availability of data may be due to the cloud service providers (CSP), in order to increase their margin of profit by reducing the cost, CSP may discard rarely accessed data without detecting in timely fashion. To overcome above issues, flexible distributed storage, token utilizing, signature creations used to ensure integrity of data, auditing mechanism used assists in maintaining the correctness of data and also locating, identifying of server where exactly the data has been corrupted and also dependability and availability of data achieved through distributed storage of data in cloud. Further in order to ensure authorized access to cloud data a admin module has been proposed in our previous conference paper, which prevents unauthorized users from accessing data and also selective storage scheme based on different parameters of cloud servers proposed in previous paper, in order to provide efficient storage of data in the cloud. In order to provide more efficiency in this paper dynamic data operations are supported such as updating, deletion and addition of data.


Author(s):  
Mohammed Radi ◽  
Ali Alwan ◽  
Abedallah Abualkishik ◽  
Adam Marks ◽  
Yonis Gulzar

Cloud computing has become a practical solution for processing big data. Cloud service providers have heterogeneous resources and offer a wide range of services with various processing capabilities. Typically, cloud users set preferences when working on a cloud platform. Some users tend to prefer the cheapest services for the given tasks, whereas other users prefer solutions that ensure the shortest response time or seek solutions that produce services ensuring an acceptable response time at a reasonable cost. The main responsibility of the cloud service broker is identifying the best data centre to be used for processing user requests. Therefore, to maintain a high level of quality of service, it is necessity to develop a service broker policy that is capable of selecting the best data centre, taking into consideration user preferences (e.g. cost, response time). This paper proposes an efficient and cost-effective plan for a service broker policy in a cloud environment based on the concept of VIKOR. The proposed solution relies on a multi-criteria decision-making technique aimed at generating an optimized solution that incorporates user preferences. The simulation results show that the proposed policy outperforms most recent policies designed for the cloud environment in many aspects, including processing time, response time, and processing cost. KEYWORDS Cloud computing, data centre selection, service broker, VIKOR, user priorities


Author(s):  
Sanjay P. Ahuja ◽  
Thomas F. Furman ◽  
Kerwin E. Roslie ◽  
Jared T. Wheeler

There are several public cloud providers that provide service across different cloud models such as IaaS, PaaS, and SaaS. End users require an objective means to assess the performance of the services being offered by the various cloud providers. Benchmarks have typically been used to evaluate the performance of various systems and can play a vital role in assessing performance of the different public cloud platforms in a vendor neutral manner. Amazon's EC2 Service is one of the leading public cloud service providers and offers many different levels of service. The research in this chapter focuses on system level benchmarks and looks into evaluating the memory, CPU, and I/O performance of two different tiers of hardware offered through Amazon's EC2. Using three distinct types of system benchmarks, the performance of the micro spot instance and the M1 small instance are measured and compared. In order to examine the performance and scalability of the hardware, the virtual machines are set up in a cluster formation ranging from two to eight nodes. The results show that the scalability of the cloud is achieved by increasing resources when applicable. This chapter also looks at the economic model and other cloud services offered by Amazon's EC2, Microsoft's Azure, and Google's App Engine.


Sign in / Sign up

Export Citation Format

Share Document