scholarly journals Deep Learning Models for Leaf Disease Detection for Crops in Agriculture Field : A Survey

Author(s):  
Sunidhi Shrivastava ◽  
Pankaj Gugnani ◽  
Neha Garg

Crop and plant Diseases are the common problems in the food production fields. This is necessary for the improvement of the food production in agriculture and for fulfills the need of the society to solve these problems. In India most of the part of the country based on the production of food as a tradition. To solve these problems some advanced image processing, machine learning, computer vision etc. advancements included. This survey research on the identification of all that kind of technologies and the existing work also has done using them. How many kinds of models are proposed and what amount of success they have achieved by utilizing them. Image processing techniques provides the automatic disease detection technique to detect and identify the diseases in plants. Deep learning techniques are very good at prediction of the growth of plan and possibility of having disease within them. A comparison study also performed of several machine and deep learning techniques based on their accuracy.

2021 ◽  
Vol 36 (2) ◽  
pp. 82-88
Author(s):  
Dr.B. Rama Subba Reddy ◽  
Dr.G. Bindu Madhavi ◽  
C.H. Sri Lakshmi ◽  
Dr.K. Venkata Nagendra ◽  
Dr.R. Sridevi

Agriculture is vital to the Indian economy as over 17 percent of total GDP and employs more than 60 percent of the population relies on agriculture. This research focuses on plant diseases as they create a major threat to food production as well as for small-scale farmer’s livelihood. Expert workers are employed in traditional farming to visually evaluate row by row to identify plant diseases, which is a time-consuming, labor-intensive activity that is potentially error-prone because it is done by humans. The aim of this research is to develop an automated detection model that uses a combination of image processing and deep learning techniques (Faster R-CNN+ResNet50) to analyze real-time images and detect and classify the three common maize plant diseases: Common Rust, Cercospora Leaf Spot, and Northern Leaf Blight. The proposed system achieved 91% accuracy and successfully detects three maize diseases.


Author(s):  
Ozge Oztimur Karadag ◽  
Ozlem Erdas

In the traditional image processing approaches, first low-level image features are extracted and then they are sent to a classifier or a recognizer for further processing. While the traditional image processing techniques employ this step-by-step approach, majority of the recent studies prefer layered architectures which both extract features and do the classification or recognition tasks. These architectures are referred as deep learning techniques and they are applicable if sufficient amount of labeled data is available and the minimum system requirements are met. Nevertheless, most of the time either the data is insufficient or the system sources are not enough. In this study, we experimented how it is still possible to obtain an effective visual representation by combining low-level visual features with features from a simple deep learning model. As a result, combinational features gave rise to 0.80 accuracy on the image data set while the performance of low-level features and deep learning features were 0.70 and 0.74 respectively.


Plant diseases have been a major crisis that is disturbing the food production. So there is a need to provide proper procedures for plant disease detection at its growing age and also during harvesting stage. Timely disease detection can help the user to respond instantly and sketch for some defensive actions. This detection can be carried out without human intervention by using plant leaf images. Deep learning is progressively best for image detection and classification. In this effort, a deep learning based GoogleNet architecture is used for plant diseases detection. The model is trained using public database of 54,306 images of 14 crop varieties and their respective diseases. It achieves 97.82% accuracy for 14 crop types making it capable of further deployment in a crop detection and protection application.


Plant disease detection is used to detect and identify symptoms of plant diseases. Detection of plant diseases through the naked eye is ineffective, especially because there are numerous diseases. Therefore, there is a need to develop low-cost methods to improve rapidity and accuracy of plant disease diagnosis. This paper presents an effective model for plant disease detection by using our developed deep learning approach. Extensive experiments were performed on the PlantVillage dataset, which contains 54,306 images categorized between 38 different classes containing 14 crop species and 26 diseases. Our proposed model demonstrated significant performance improvement in terms of accuracy, recall, precision, and F1-score compared with the existing model used for plant disease detection.


2021 ◽  
pp. 362-372
Author(s):  
John Sreya ◽  
Leena Rose Arul

As we belong to a developing country, the agricultural importance is a known criterion. Majority of the Indians depend on agriculture for their basic living. It also serves as the backbone of the Indian economy. Therefore this sector should be considered important and taken care of. Diseases affecting the plants and pest are the two major threats of agriculture production. Naked eye observation followed by the addition of chemical fertilizers is the traditional method adopted by most of the farmers to avoid plant diseases. But the main limitation to this method is that it works only in the case of small scale farming. In order to tackle this issue many automatic plant disease detection systems have been developed from the early 70s. This paper is intended to survey some of the existing works in plant disease recognition that include various procedures, materials and approaches. They use different machine learning algorithms, image processing techniques and deep learning methods for disease detection. This paper also compares and suggests novel methods to recognize and classify the various kinds of infections affecting agricultural plants.


2020 ◽  
Vol 8 (6) ◽  
pp. 5730-5737

Digital Image Processing is application of computer algorithms to process, manipulate and interpret images. As a field it is playing an increasingly important role in many aspects of people’s daily life. Even though Image Processing has accomplished a great deal on its own, nowadays researches are being conducted in using it with Deep Learning (which is part of a broader family, Machine Learning) to achieve better performance in detecting and classifying objects in an image. Car’s License Plate Recognition is one of the hottest research topics in the domain of Image Processing (Computer Vision). It is having wide range of applications since license number is the primary and mandatory identifier of motor vehicles. When it comes to license plates in Ethiopia, they have unique features like Amharic characters, differing dimensions and plate formats. Although there is a research conducted on ELPR, it was attempted using the conventional image processing techniques but never with deep learning. In this proposed research an attempt is going to be made in tackling the problem of ELPR with deep learning and image processing. Tensorflow is going to be used in building the deep learning model and all the image processing is going to be done with OpenCV-Python. So, at the end of this research a deep learning model that recognizes Ethiopian license plates with better accuracy is going to be built.


2021 ◽  
Author(s):  
Hepzibah Elizabeth David ◽  
K. Ramalakshmi ◽  
R. Venkatesan ◽  
G. Hemalatha

Tomato crops are infected with various diseases that impair tomato production. The recognition of the tomato leaf disease at an early stage protects the tomato crops from getting affected. In the present generation, the emerging deep learning techniques Convolutional Neural Network (CNNs), Recurrent Neural Network (RNNs), Long-Short Term Memory (LSTMs) has manifested significant progress in image classification, image identification, and Sequence Predictions. Thus by using these computer vision-based deep learning techniques, we developed a new method for automatic leaf disease detection. This proposed model is a robust technique for tomato leaf disease identification that gives accurate and better results than other traditional methods. Early tomato leaf disease detection is made possible by using the hybrid CNN-RNN architecture which utilizes less computational effort. In this paper, the required methods for implementing the disease recognition model with results are briefly explained. This paper also mentions the scope of developing more reliable and effective means of classifying and detecting all plant species.


Sign in / Sign up

Export Citation Format

Share Document