scholarly journals An Enhanced Plant Disease Classifier Model Based on Deep Learning Techniques

Plant disease detection is used to detect and identify symptoms of plant diseases. Detection of plant diseases through the naked eye is ineffective, especially because there are numerous diseases. Therefore, there is a need to develop low-cost methods to improve rapidity and accuracy of plant disease diagnosis. This paper presents an effective model for plant disease detection by using our developed deep learning approach. Extensive experiments were performed on the PlantVillage dataset, which contains 54,306 images categorized between 38 different classes containing 14 crop species and 26 diseases. Our proposed model demonstrated significant performance improvement in terms of accuracy, recall, precision, and F1-score compared with the existing model used for plant disease detection.

AI ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 413-428
Author(s):  
Arunabha M. Roy ◽  
Jayabrata Bhaduri

In this paper, a deep learning enabled object detection model for multi-class plant disease has been proposed based on a state-of-the-art computer vision algorithm. While most existing models are limited to disease detection on a large scale, the current model addresses the accurate detection of fine-grained, multi-scale early disease detection. The proposed model has been improved to optimize for both detection speed and accuracy and applied to multi-class apple plant disease detection in the real environment. The mean average precision (mAP) and F1-score of the detection model reached up to 91.2% and 95.9%, respectively, at a detection rate of 56.9 FPS. The overall detection result demonstrates that the current algorithm significantly outperforms the state-of-the-art detection model with a 9.05% increase in precision and 7.6% increase in F1-score. The proposed model can be employed as an effective and efficient method to detect different apple plant diseases under complex orchard scenarios.


2021 ◽  
Vol 11 (4) ◽  
pp. 251-264
Author(s):  
Radhika Bhagwat ◽  
Yogesh Dandawate

Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images.


2021 ◽  
Vol 11 (1) ◽  
pp. 491-508
Author(s):  
Monika Lamba ◽  
Yogita Gigras ◽  
Anuradha Dhull

Abstract Detection of plant disease has a crucial role in better understanding the economy of India in terms of agricultural productivity. Early recognition and categorization of diseases in plants are very crucial as it can adversely affect the growth and development of species. Numerous machine learning methods like SVM (support vector machine), random forest, KNN (k-nearest neighbor), Naïve Bayes, decision tree, etc., have been exploited for recognition, discovery, and categorization of plant diseases; however, the advancement of machine learning by DL (deep learning) is supposed to possess tremendous potential in enhancing the accuracy. This paper proposed a model comprising of Auto-Color Correlogram as image filter and DL as classifiers with different activation functions for plant disease. This proposed model is implemented on four different datasets to solve binary and multiclass subcategories of plant diseases. Using the proposed model, results achieved are better, obtaining 99.4% accuracy and 99.9% sensitivity for binary class and 99.2% accuracy for multiclass. It is proven that the proposed model outperforms other approaches, namely LibSVM, SMO (sequential minimal optimization), and DL with activation function softmax and softsign in terms of F-measure, recall, MCC (Matthews correlation coefficient), specificity and sensitivity.


Author(s):  
Shradha Verma ◽  
Anuradha Chug ◽  
Amit Prakash Singh ◽  
Shubham Sharma ◽  
Puranjay Rajvanshi

With the increasing computational power, areas such as machine learning, image processing, deep learning, etc. have been extensively applied in agriculture. This chapter investigates the applications of the said areas and various prediction models in plant pathology for accurate classification, identification, and quantification of plant diseases. The authors aim to automate the plant disease identification process. To accomplish this objective, CNN has been utilized for image classification. Research shows that deep learning architectures outperform other machine learning tools significantly. To this effect, the authors have implemented and trained five CNN models, namely Inception ResNet v2, VGG16, VGG19, ResNet50, and Xception, on PlantVillage dataset for tomato leaf images. The authors analyzed 18,160 tomato leaf images spread across 10 class labels. After comparing their performance measures, ResNet50 proved to be the most accurate prediction tool. It was employed to create a mobile application to classify and identify tomato plant diseases successfully.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 939 ◽  
Author(s):  
Marko Arsenovic ◽  
Mirjana Karanovic ◽  
Srdjan Sladojevic ◽  
Andras Anderla ◽  
Darko Stefanovic

Plant diseases cause great damage in agriculture, resulting in significant yield losses. The recent expansion of deep learning methods has found its application in plant disease detection, offering a robust tool with highly accurate results. The current limitations and shortcomings of existing plant disease detection models are presented and discussed in this paper. Furthermore, a new dataset containing 79,265 images was introduced with the aim to become the largest dataset containing leaf images. Images were taken in various weather conditions, at different angles, and daylight hours with an inconsistent background mimicking practical situations. Two approaches were used to augment the number of images in the dataset: traditional augmentation methods and state-of-the-art style generative adversarial networks. Several experiments were conducted to test the impact of training in a controlled environment and usage in real-life situations to accurately identify plant diseases in a complex background and in various conditions including the detection of multiple diseases in a single leaf. Finally, a novel two-stage architecture of a neural network was proposed for plant disease classification focused on a real environment. The trained model achieved an accuracy of 93.67%.


Deep learning techniques, particularly Convolutional Neural Networks (CNNs), have led to significant progress in image processing. Many applications in automatic identification of plant diseases have been developed. This work adopts a new approach that focuses on studying a relevant parameter that make a significant impact on the performance of CNNs, namely, the variants of activation function, particularly the most famous used functions and their influence on the model’s performance and accuracy. We will also present the different types of activation functions, which are also called transfer functions. Then, and through a case study application to the plant disease detection, we will have the opportunity to compare the results of these different functions with a graphical presentation using evaluation metrics, such as accuracy functions and loss functions as Binary Cross-Entropy. The training of the models was carried out using a free accessible database of 20,639 photographs, taken both in the laboratory and in real conditions from the crop fields. The data includes three plant species in fifteen distinct classes of combinations [plant, disease], including some healthy plants.


2020 ◽  
Vol 8 (6) ◽  
pp. 3069-3075

Plant diseases are diseases that change or disrupt its important functions. The reduction in the age at which a plant dies is the main danger of plant diseases. And farmers around the world have to face the challenge of identifying and classifying these diseases and changing their treatments for each disease. This task becomes more difficult when they have to rely on naked eyes to identify diseases due to the lack of proper financial resources. But with the widespread use of smartphones by farmers and advances made in the field of deep learning, researchers around the world are trying to find a solution to this problem. Similarly, the purpose of this paper is to classify these diseases using deep learning and localize them on their respective leaves. We have considered two main models for classification called resnet and efficientnet and for localizing these diseases we have used GRADCAM and CAM. GRADCAM was able to localize diseases better than CAM


2021 ◽  
Vol 12 ◽  
Author(s):  
Alvaro Fuentes ◽  
Sook Yoon ◽  
Mun Haeng Lee ◽  
Dong Sun Park

Recognizing plant diseases is a major challenge in agriculture, and recent works based on deep learning have shown high efficiency in addressing problems directly related to this area. Nonetheless, weak performance has been observed when a model trained on a particular dataset is evaluated in new greenhouse environments. Therefore, in this work, we take a step towards these issues and present a strategy to improve model accuracy by applying techniques that can help refine the model’s generalization capability to deal with complex changes in new greenhouse environments. We propose a paradigm called “control to target classes.” The core of our approach is to train and validate a deep learning-based detector using target and control classes on images collected in various greenhouses. Then, we apply the generated features for testing the inference of the system on data from new greenhouse conditions where the goal is to detect target classes exclusively. Therefore, by having explicit control over inter- and intra-class variations, our model can distinguish data variations that make the system more robust when applied to new scenarios. Experiments demonstrate the effectiveness and efficiency of the proposed approach on our extended tomato plant diseases dataset with 14 classes, from which 5 are target classes and the rest are control classes. Our detector achieves a recognition rate of target classes of 93.37% mean average precision on the inference dataset. Finally, we believe that our study offers valuable guidelines for researchers working in plant disease recognition with complex input data.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yosuke Toda ◽  
Fumio Okura

Deep learning with convolutional neural networks (CNNs) has achieved great success in the classification of various plant diseases. However, a limited number of studies have elucidated the process of inference, leaving it as an untouchable black box. Revealing the CNN to extract the learned feature as an interpretable form not only ensures its reliability but also enables the validation of the model authenticity and the training dataset by human intervention. In this study, a variety of neuron-wise and layer-wise visualization methods were applied using a CNN, trained with a publicly available plant disease image dataset. We showed that neural networks can capture the colors and textures of lesions specific to respective diseases upon diagnosis, which resembles human decision-making. While several visualization methods were used as they are, others had to be optimized to target a specific layer that fully captures the features to generate consequential outputs. Moreover, by interpreting the generated attention maps, we identified several layers that were not contributing to inference and removed such layers inside the network, decreasing the number of parameters by 75% without affecting the classification accuracy. The results provide an impetus for the CNN black box users in the field of plant science to better understand the diagnosis process and lead to further efficient use of deep learning for plant disease diagnosis.


Sign in / Sign up

Export Citation Format

Share Document