scholarly journals BIOGENIC GAS IN DELTAIC DEPOSITION ENVIRONMENT IN KAPUAS RIVER, WEST KALIMANTAN AND ITS UTILIZATIONS FOR LOCAL COMMUNITY

2016 ◽  
Vol 24 (2) ◽  
pp. 55
Author(s):  
Hananto Kurnio ◽  
Yudi Darlan

Biogenic gas within a deltaic deposition environment in the Kapuas rivermouth of West Kalimantan occurred in fine to very fine quartz sand reservoir of shallow boreholes of having the depth of 1-12 m below ground surface. This reservoir is covered by peaty layers of semi-impermeable property. During high tide, gas bubbling took place in the water column above the ground of these semi-impermeable layers. Utilizations of biogenic gas had been done succesfully. These works were carried out through drilling, piping, gas storage and installations for gas stove and gas electricity generator of 500 watt capacity at chief village house as an example before widely used to the local community. Keywords: Biogenic Gas; Deltaic Deposition Environment; Kapuas River; west Kalimantan, Utilization. Gas biogenik dalam suatu lingkungan pengendapan delta di muara Sungai Kapuas Kalimantan Barat terdapat dalam reservoar pasir kuarsa berukuran halus hingga sangat halus pada kedalaman bor dangkal 1-12 m di bawah permukaan tanah. Reservoar ini ditutupi oleh lapisan gambut semiimpermeabel. Selama pasang naik, gelembung gas teramati dalam kolom air di atas permukaan lapisan semi-impermeabel ini. Pemanfaatan gas biogenik telah dilaksanakan dengan sukses. Pemanfaatan ini dilakukan melalui pemboran, pipanisasi, penampungan gas dan instalasi untuk kompor gas dan generator listrik berbahan bakar gas kapasitas 500 watt di rumah Kepala Desa sebagai contoh sebelum dimanfaatkan secara luas oleh masyarakat setempat. Kata kunci: Gas Biogenik, Lingkungan Pengendapan Delta, Sungai Kapuas, Kalimantan Barat, Pemanfaatan

1975 ◽  
Vol 12 (4) ◽  
pp. 464-481 ◽  
Author(s):  
E. Karl Sauer ◽  
V. G. Beckie

A groundwater supply of 600 imperial gallons per minute (27301/min) was required at Landis, Saskatchewan, for development of an underground gas storage cavern with 1.19 × 106 barrel capacity. The cavern was to be developed by dissolving and removing the salts of the Middle Devonian Prairie Evaporite Formation the top of which is 3940 ft (1201 m) below ground surface. It was found that the most productive aquifers were in the glacial drift. Three intertill aquifers were identified. The presence of four till stratigraphic units was used as a basis for the interpretation of the groundwater hydrology. Three pumpwells were completed. Tests and analyses include aquifer coefficients such as transmissivity, storage coefficients, vertical permeability, and estimates of safe yields. A monitoring system was also established to measure the effect of high production on local domestic wells. This project demonstrated the value of establishing a formal stratigraphic system for interpretation of aquifer properties in glacial deposits.


2012 ◽  
Vol 11 (2) ◽  
Author(s):  
Teguh Prayogo ◽  
Bayu Budiman

Ketapang area is one of lower part or southern sub-province of West Kalimanatan Province, which is located geographically between 108o40’ and 111o20’ in Longitude and between 0o20’ and 3o04’ in Latitude. This area has various of industrial mineral resources, for example quartz sand. Quartz sand or also calledwith white sand is the reasult of rock weathering that contents main mineral, such as quartz, and felsdpar. Then, the result of weathering is cleaned and transported by water or wind and deposited in the stream side, lake or sea. In this paper will bedescribed concerning to locations, characteristics, and usages of quratz sand in Ketapang area, West Kalimantan Province. Based on chemical or laboratory analysis and interpretation, the quartz sands can be used as glass industry, cement industry material, and moulding industry.


2022 ◽  
Vol 41 (1) ◽  
pp. 54-61
Author(s):  
Moyagabo K. Rapetsoa ◽  
Musa S. D. Manzi ◽  
Mpofana Sihoyiya ◽  
Michael Westgate ◽  
Phumlani Kubeka ◽  
...  

We demonstrate the application of seismic methods using in-mine infrastructure such as exploration tunnels to image platinum deposits and geologic structures using different acquisition configurations. In 2020, seismic experiments were conducted underground at the Maseve platinum mine in the Bushveld Complex of South Africa. These seismic experiments were part of the Advanced Orebody Knowledge project titled “Developing technologies that will be used to obtain information ahead of the mine face.” In these experiments, we recorded active and passive seismic data using surface nodal arrays and an in-mine seismic land streamer. We focus on analyzing only the in-mine active seismic portion of the survey. The tunnel seismic survey consisted of seven 2D profiles in exploration tunnels, located approximately 550 m below ground surface and a few meters above known platinum deposits. A careful data-processing approach was adopted to enhance high-quality reflections and suppress infrastructure-generated noise. Despite challenges presented by the in-mine noisy environment, we successfully imaged the platinum deposits with the aid of borehole data and geologic models. The results open opportunities to adapt surface-based geophysical instruments to address challenging in-mine environments for mineral exploration.


2010 ◽  
Vol 26 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Frank Forcella ◽  
Trevor James ◽  
Anis Rahman

AbstractCorn gluten meal (CGM) is an approved organic fertilizer and pre-emergence herbicide that can be manufactured in the form of grit. This grit was tested for its ability to abrade seedlings of the summer annual weedy grass, Setaria pumila, when plants were in the 1- to 5-leaf stages of growth. CGM was propelled at air pressures of 250–750 kPa at distances of 30–60 cm from the plants. Established seedlings of S. pumila were controlled more effectively when grit was applied at 500 and 750 kPa than at 250 kPa, as well as when the applicator's nozzle was 30 cm from the plants compared to 60 cm distance. Seedling growth and dry weights were greatly reduced by exposures to grit at 60 cm and 500 kPa for 2 s or less, and seedlings were nearly completely destroyed at 30 cm distance and 750 kPa. CGM, a soft grit, was as effective for abrading seedlings as fine quartz sand, a hard grit. CGM had little pre-emergence herbicidal effect on S. pumila. Although regrowth can occur in S. pumila after abrasion by grit, the initial grit-induced stunting is sufficient to allow competing crop plants, like maize, to escape competition and suppress the weed. Consequently, CGM may be an effective form of soft grit for post-emergence abrasion of seedlings of summer annual grass weeds in organic row crops, while simultaneously supplying the crop with fertilizer.


Author(s):  
Earl B. Alexander ◽  
Roger G. Coleman ◽  
Todd Keeler-Wolfe ◽  
Susan P. Harrison

We walk on soils frequently, but we seldom observe them. Soils are massive, even though they are porous. Soil 1m (40 inches) deep over an area of 1 hectare (2.5 acres) might weigh 10,000–15,000 metric tons. It is teeming with life. There are trillions, or quadrillions, of living organisms (mostly microorganisms), representing thousands of species, in each square meter of soil (Metting 1993). In fact, species diversity, or number of species, may be greater below ground than above ground. We seldom see these organisms because we seldom look below ground or dig into it. The many worms and insects one finds digging in a garden are a small fraction of the species in soils because the greatest diversity of soil-dwelling species exists among microscopic insects, mites, roundworms (or nematodes), and fungi. Even though individual organisms in soils are mostly very small or microscopic, the total mass of living organisms in a hectare of soil, excluding plant roots, may be 1–5 or 10 metric tons. More than one-half of that biomass is bacteria and fungi. Living microorganism biomass generally accounts for about 1%–5% of the organic carbon and about 2%–6% of the nitrogen in soils (Lavelle and Spain 2001). The upper limit of soil is the ground surface of the earth. The lower limit is bedrock for engineers, or the depth of root penetration for edaphologists. Unconsolidated material that engineers call soil can be called “regolith” (Merrill 1897, Jackson 1997) to distinguish it from the soil of pedologists and edaphologists. Regolith may consist of disintegrated bedrock, gravel, sand, clay, or other materials that have not been consolidated to form rock. Pedologists investigate the upper part of regolith, where changes are effected by exchanges of gases between soil and aboveground atmosphere and by biological activity. This soil of pedologists may coincide with that of edaphologists or include more regolith. In fact, the lower limit of soil that pedologists investigate is arbitrary, unless this limit is a contact with bedrock that is practically impenetrable with pick and shovel.


2014 ◽  
Vol 17 (1-2) ◽  
pp. 33-37 ◽  
Author(s):  
Priya Lal Chandra Paul ◽  
MA Rashid ◽  
Mousumi Paul

Experiments were conducted at BRRI farm Gazipur during Boro season 2010-12 to determine maximum depth of water level below ground surface in alternate wetting and drying (AWD) method. The experiment was laid out in a randomized complete block design with four irrigation treatments. The treatments of AWD method were: T1 = continuous standing water, T2 = irrigation when water level reached 15 cm below ground level, T3 = irrigation when water level reached 20 cm below ground level and T4 = irrigation when water level reached 50 cm below ground level. The experiment involved BRRI dhan28 as a test crop. The treatment T2 gave the highest grain yield (5.9 and 6.2 ton/ha) in 2010-11 and 2011-12, respectively. Maximum benefits per hectare were found Tk. 5476 and 4931 for using 807 and 880 mm water during 2010-11 and 2011-12 respectively and thus water productivity was 7.1 kg/ha-mm in T2 for both the seasons. Continuous standing (T1) water (1013 and 1100 mm) gave comparable grain yield 5.7 and 6.0 ton/ha in 2010-11 and 2011-12, respectively. Minimum water productivity was found in treatment T1 (5.6 and 5.4 kg/ha-mm) for both the seasons. Application of irrigation when water was 15 cm below soil surface was found most profitable in AWD system and the grain yield was decreased when water level was below 15 cm depth. Therefore, the recommended AWD technology could increase rice yield and save irrigation water by 25-30 percent.DOI: http://dx.doi.org/10.3329/brj.v17i1-2.20899Bangladesh Rice j. 2013, 17(1&2): 33-37


Author(s):  
Igor Romanenko ◽  
Alexey Fadin ◽  
Irina Petrovnina ◽  
Maria Romanenko

1985 ◽  
Vol 22 (4) ◽  
pp. 518-527 ◽  
Author(s):  
P. K. Robertson ◽  
R. G. Campanella ◽  
P. T. Brown ◽  
I. Grof ◽  
J. M. O. Hughes

A 915 mm diameter steel pipe pile was driven and tested by the B.C. Ministry of Transportation and Highways as part of their foundation studies for the proposed Annacis channel crossing of the Fraser River. The pile was driven open ended to a maximum depth of 94 m. The pile was tested axially to failure when the pile tip was at depths of 67, 78, and 94 m below ground surface. Following the final axial load test, the pile was loaded laterally to a total deflection at the ground surface of 150 mm. A slope indicator casing was installed in the pile to monitor the deflected shape during lateral loading.Adjacent to the pile, a piezometer-friction cone penetration test (CPT) and a full-displacement pressuremeter profile were made. Results of the axial and lateral load tests are presented along with the data from the CPT and the full-displacement pressuremeter tests. Results of several analyses using the data from the CPT and pressuremeter tests to predict the axial and lateral performance of the pile are presented. A comparison and discussion is presented between the predicted and measured axial and lateral behaviour of the pile, for which excellent agreement was found. Key words: pile load test, cone penetration test, pressuremeter test.


Sign in / Sign up

Export Citation Format

Share Document