scholarly journals MANAGEMENT STRATEGIES FOR ENERGY PROCESSES IN ELECTRIC ROLLING STOCK WITH ON-BOARD ENERGY STORAGE DEVICES

Author(s):  
A. Sulym ◽  
P. Khozia

The article deals with the main existing strategies for management strategy of energy exchange processes in the electric rolling stock with onboard capacitive energy storage devices. When considering strategies, it is assumed that the onboard capacitive storage has low power and capacitance. Therefore, this capacitor storage is not able to accept the full amount of regenerative braking energy of the electric rolling stock. The purpose of the paper is to consider and analyze management strategies for energy exchange processes in the electric rolling stock with onboard capacitive energy storages; to define the advantages and disadvantages of each of the existing strategies and propose a concept for the effective management of energy exchange processes in the electric rolling stock. The block diagram of electric rolling stock with the onboard capacitive energy storage which is used for the analysis of management strategies for energy exchange processes is presented. The modes of operation of electric rolling stock with onboard capacitive energy storages are described. Five main strategies for management of energy exchange processes on the electric rolling stock with onboard capacitive energy storages are determined. The advantages and disadvantages of each strategy are set out taking into account the given conditions (characteristics of the electric rolling stock, conditions of the rolling stock motion, oscillograph charts, etc.). The general advantages and shortcomings of each strategy are defined, which allowed to propose the concept of creating an adaptive strategy for managing energy exchange processes in electric rolling stock with onboard capacitive energy storages. The main concept of this management strategy is to implement efficient energy exchange between the traction equipment, the onboard capacitive energy storage, the overhead contact system, both in normal and emergency modes of traction power supply, taking into account the dynamics of energy exchange processes in the overhead contact system, which will generally allow safety and energy efficiency of the transportation process. The obtained research results will contribute to the development and implementation of effective strategies for managing energy exchange processes in the electric rolling stock.

2021 ◽  
Vol 1 (3) ◽  
pp. 49-56
Author(s):  
S.M. Zuyev ◽  
◽  
R.A. Maleyev ◽  
YU.M. Shmatkov ◽  
M.YU. Khandzhalov ◽  
...  

This article provides a comparative analysis of various energy storage devices. A detailed review and analysis of molecular energy storage units is carried out, their main characteristics and parame-ters, as well as their application areas, are determined. The main types of molecular energy storage are determined: electric double layer capacitors, pseudo capacitors, hybrid capacitors. Comparison of the characteristics of various batteries is given. The parameters of various energy storage devices are presented. The analysis of molecular energy storage devices and accumulators is carried out. Ttheir advantages and disadvantages are revealed. It has been shown that molecular energy storage or double layer electrochemical capacitors are ideal energy storage systems due to their high specific energy, fast charging and long life compared to conventional capacitors. The article presents oscillograms of a lithium-ion battery with a voltage of 10.8 V at a pulsed load current of 2A of a laptop with and without a molecular energy storage device, as well as oscil-lograms of a laptop with DVD lithium-ion battery with a voltage of 10.8 V with a parallel shutdown of a molecular energy storage device with a capacity of 7 F and without it. The comparative analysis shows that when the molecular energy storage unit with a 7 F capacity is switched on and off, transient processes are significantly improved and there are no supply voltage dips. The dependenc-es of the operating time of a 3.6 V 600 mAh lithium-ion battery at a load of 2 A for powering mo-bile cellular devices with and without a molecular energy storage are given. It is shown that when the molecular energy storage device is switched on, the battery operation time increases by almost 20%.


2013 ◽  
Vol 78 (12) ◽  
pp. 2141-2164 ◽  
Author(s):  
Vladimir Panic ◽  
Aleksandar Dekanski ◽  
Branislav Nikolic

Porous electrochemical supercapacitive materials, as an important type of new-generation energy storage devices, require a detailed analysis and knowledge of their capacitive performances upon different charging/discharging regimes. The investigation of the responses to dynamic perturbations of typical representatives, noble metal oxides, carbonaceous materials and RuO2-impregnated carbon blacks, by electrochemical impedance spectroscopy (EIS) is presented. This presentation follows a brief description of supercapacitive behavior and origin of pseudocapacitive response of noble metal oxides. For all investigated materials, the electrical charging/discharging equivalent of the EIS response was found to obey the transmission line model envisaged as so-called ?resistor/capacitor (RC) ladder?. The ladder features are correlated to material physicochemical properties, its composition and the composition of the electrolyte. Fitting of the EIS data of different supercapacitive materials to appropriate RC ladders enables the in-depth profiling of the capacitance and pore resistance of their porous thin-layers and finally the complete revelation of capacitive energy storage issues.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001380-001406
Author(s):  
Aubrey N. Beal ◽  
John Tatarchuk ◽  
Colin Stevens ◽  
Thomas Baginski ◽  
Michael Hamilton ◽  
...  

The need for integrated passive components which meet the stringent power system requirements imposed by increased data rates, signal path density and challenging power distribution network topologies in integrated systems yield diverse motivations for high density, miniaturized capacitors capable of quickly sourcing large quantities of current. These diverse motivations have led to the realization of high density capacitor structures through the means of several technologies. These structures have been evaluated as high-speed, energy storage devices and their respective fabrication technologies have been closely compared for matching integrated circuit speed and density increase, chip current requirements, low resistance, low leakage current, high capacitance and compatibility with relatively high frequencies of operation (~1GHz). These technologies include devices that utilize pn junctions, Schottky barriers, optimized surface area techniques and the utilization of high dielectric constant (high-K) materials, such as hafnium oxide, as a dielectric layer through the means of atomic layer deposition (ALD). The resulting devices were micro-machined, large surface area, thin, high-density capacitor technologies optimized as embedded passive devices for thin silicon interposers. This work outlines the design, fabrication, simulation and testing of each device revision using standard silicon microfabrication processes and silicon interposer technologies. Consequently, capacitive storage devices were micro-machined with geometries which maximize surface area and exhibit the capability of sourcing 100A of current with a response time greater than 100 A/nsec through the use of thin layered, ALD high-K materials. The simulation and testing of these devices show general agreement when subjected to a standard ring-down procedure. This paper provides descriptions and design challenges encountered during fabrication, testing and integration of these passive devices. In addition, potential device integration and implementation strategies for use in silicon interposers are also provided. The modification and revision of several device generations is documented showing increased device capacitance density, maximized current capabilities and minimized effects of series inductance and resistance. The resulting structures are thin, capacitive devices that may be micro-machined using industry standard Si MEMS processes and are compatible with Si interposer 3D technologies. The subsequent design processes allow integrated passive components to be attached beneath chips in order to maximize system area and minimize the chip real estate required for capacitive energy storage devices.


2015 ◽  
Vol 127 (23) ◽  
pp. 6904-6907 ◽  
Author(s):  
Jiasheng Qian ◽  
Huanyu Jin ◽  
Bolei Chen ◽  
Mei Lin ◽  
Wei Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document