scholarly journals PREDICTING TIME BEFORE THE NEXT ORDER IN THE ONLINE STORE, BASED ON MACHINE LEARNING METHODS

2020 ◽  
Author(s):  
Olena Piskunova ◽  
◽  
Rostyslav Klochko ◽  

Due to the rapid development of e-commerce and increased competition in the retail market of Ukraine, companies are forced to look for new ways to grow their business. One of the options is to optimize business processes, in particular to increase the efficiency of marketing activities. Predicting consumer behavior is one of the most effective methods of optimizing marketing budgets by building processes based on the individual characteristics of each client. The aim of the study was to predict the behavior of online store customers, namely the time before the next order, based on machine learning methods and a comparative analysis of the effectiveness of different modeling algorithms. Five classification algorithms were implemented: linear discriminant analysis, сlassification and regression trees, random forest, support vector machine, k - nearest neighbors and comparative analysis of their efficiency was performed. Given the peculiarities of customer behavior for forecasting time to the next order, it is proposed to consider the following time intervals in the future when the customer makes the next order: up to two months, two to six months, six to fifteen months, and without order. Predicting such intervals allows us to identify customers who are more likely to make the next purchase and focus our advertising budgets on them, or build a customer experience management strategy: activate customers who have left, offer discounts to customers who are going to leave. Peculiarities of classification models quality assessment on the basis of the “confusion matrix” according to the forecasting accuracy indicators “Accuracy”, “F1”, “Recall” and “Precision” is considered. The study allowed us to give preference to the model of classification "random forest". A tenfold cross-validation was used to improve the quality of the simulation. The weighted accuracy of “F1” in the groups “Up to two months” and “two-six months” reached 62.5% and 64.1%, respectively. The developed model should reduce the influence of the human factor on the decision-making process in the construction of marketing strategies.

Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 771
Author(s):  
Toshiya Arakawa

Mammalian behavior is typically monitored by observation. However, direct observation requires a substantial amount of effort and time, if the number of mammals to be observed is sufficiently large or if the observation is conducted for a prolonged period. In this study, machine learning methods as hidden Markov models (HMMs), random forests, support vector machines (SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was obtained using a video tracking system and used to estimate whether they, which are in “estrus” or “non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally, the PC of random forest seems to be the highest. However, The percentage concordance (PC) value besides the goats whose data were used for training data sets is relatively low. It is suggested that random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs is high. However, considering the calculation time and HMM’s advantage in that it is a time series model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s data were acquired, neural network would be an adequate method for estimation.


2020 ◽  
Vol 10 (4) ◽  
pp. 41-50
Author(s):  
A.A. Osin ◽  
A.K. Fomin ◽  
G.B. Sologub ◽  
V.I. Vinogradov

The work is aimed at researching the possibility of using machine learning methods to build models for forecasting demand for new products in the online store Ozon. ru. Approaches to the solution that were not previously used in a specific task are proposed for consideration. Data on sales history and storage of goods at Ozon.ru are used as a sample. There is a description and analysis of the approximate loss of the Ozon.ru website, the data used, the process of building a base model, and the results obtained. It describes the metrics used to evaluate the prediction results and makes a comparative analysis between the prediction results of the built model and the results of heuristically selected values.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Kerry E. Poppenberg ◽  
Vincent M. Tutino ◽  
Lu Li ◽  
Muhammad Waqas ◽  
Armond June ◽  
...  

Abstract Background Intracranial aneurysms (IAs) are dangerous because of their potential to rupture. We previously found significant RNA expression differences in circulating neutrophils between patients with and without unruptured IAs and trained machine learning models to predict presence of IA using 40 neutrophil transcriptomes. Here, we aim to develop a predictive model for unruptured IA using neutrophil transcriptomes from a larger population and more robust machine learning methods. Methods Neutrophil RNA extracted from the blood of 134 patients (55 with IA, 79 IA-free controls) was subjected to next-generation RNA sequencing. In a randomly-selected training cohort (n = 94), the Least Absolute Shrinkage and Selection Operator (LASSO) selected transcripts, from which we constructed prediction models via 4 well-established supervised machine-learning algorithms (K-Nearest Neighbors, Random Forest, and Support Vector Machines with Gaussian and cubic kernels). We tested the models in the remaining samples (n = 40) and assessed model performance by receiver-operating-characteristic (ROC) curves. Real-time quantitative polymerase chain reaction (RT-qPCR) of 9 IA-associated genes was used to verify gene expression in a subset of 49 neutrophil RNA samples. We also examined the potential influence of demographics and comorbidities on model prediction. Results Feature selection using LASSO in the training cohort identified 37 IA-associated transcripts. Models trained using these transcripts had a maximum accuracy of 90% in the testing cohort. The testing performance across all methods had an average area under ROC curve (AUC) = 0.97, an improvement over our previous models. The Random Forest model performed best across both training and testing cohorts. RT-qPCR confirmed expression differences in 7 of 9 genes tested. Gene ontology and IPA network analyses performed on the 37 model genes reflected dysregulated inflammation, cell signaling, and apoptosis processes. In our data, demographics and comorbidities did not affect model performance. Conclusions We improved upon our previous IA prediction models based on circulating neutrophil transcriptomes by increasing sample size and by implementing LASSO and more robust machine learning methods. Future studies are needed to validate these models in larger cohorts and further investigate effect of covariates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Runbin Sun ◽  
Haokai Zhao ◽  
Shuzhen Huang ◽  
Ran Zhang ◽  
Zhenyao Lu ◽  
...  

Liver has an ability to regenerate itself in mammals, whereas the mechanism has not been fully explained. Here we used a GC/MS-based metabolomic method to profile the dynamic endogenous metabolic change in the serum of C57BL/6J mice at different times after 2/3 partial hepatectomy (PHx), and nine machine learning methods including Least Absolute Shrinkage and Selection Operator Regression (LASSO), Partial Least Squares Regression (PLS), Principal Components Regression (PCR), k-Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient Boosting (xgbDART), Neural Network (NNET) and Bayesian Regularized Neural Network (BRNN) were used for regression between the liver index and metabolomic data at different stages of liver regeneration. We found a tree-based random forest method that had the minimum average Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the maximum R square (R2) and is time-saving. Furthermore, variable of importance in the project (VIP) analysis of RF method was performed and metabolites with VIP ranked top 20 were selected as the most critical metabolites contributing to the model. Ornithine, phenylalanine, 2-hydroxybutyric acid, lysine, etc. were chosen as the most important metabolites which had strong correlations with the liver index. Further pathway analysis found Arginine biosynthesis, Pantothenate and CoA biosynthesis, Galactose metabolism, Valine, leucine and isoleucine degradation were the most influenced pathways. In summary, several amino acid metabolic pathways and glucose metabolism pathway were dynamically changed during liver regeneration. The RF method showed advantages for predicting the liver index after PHx over other machine learning methods used and a metabolic clock containing four metabolites is established to predict the liver index during liver regeneration.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012190
Author(s):  
E V Bunyaeva ◽  
I V Kuznetsov ◽  
Y V Ponomarchuk ◽  
P S Timosh

Abstract The paper considers comparative analysis results of the machine learning methods used for the gesture recognition based on the surface single-channel electromyography (sEMG) data. The data were processed using multilayer perceptron, support vector machine, decision tree ensemble (Random Forest) and logistic regression for the chosen four gesture types. The conclusion was derived on the analysis efficiency of these methods using commonly recommended accuracy metrics.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 66 ◽  
Author(s):  
Sevda Shabani ◽  
Saeed Samadianfard ◽  
Mohammad Taghi Sattari ◽  
Amir Mosavi ◽  
Shahaboddin Shamshirband ◽  
...  

Evaporation is a very important process; it is one of the most critical factors in agricultural, hydrological, and meteorological studies. Due to the interactions of multiple climatic factors, evaporation is considered as a complex and nonlinear phenomenon to model. Thus, machine learning methods have gained popularity in this realm. In the present study, four machine learning methods of Gaussian Process Regression (GPR), K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Regression (SVR) were used to predict the pan evaporation (PE). Meteorological data including PE, temperature (T), relative humidity (RH), wind speed (W), and sunny hours (S) collected from 2011 through 2017. The accuracy of the studied methods was determined using the statistical indices of Root Mean Squared Error (RMSE), correlation coefficient (R) and Mean Absolute Error (MAE). Furthermore, the Taylor charts utilized for evaluating the accuracy of the mentioned models. The results of this study showed that at Gonbad-e Kavus, Gorgan and Bandar Torkman stations, GPR with RMSE of 1.521 mm/day, 1.244 mm/day, and 1.254 mm/day, KNN with RMSE of 1.991 mm/day, 1.775 mm/day, and 1.577 mm/day, RF with RMSE of 1.614 mm/day, 1.337 mm/day, and 1.316 mm/day, and SVR with RMSE of 1.55 mm/day, 1.262 mm/day, and 1.275 mm/day had more appropriate performances in estimating PE values. It was found that GPR for Gonbad-e Kavus Station with input parameters of T, W and S and GPR for Gorgan and Bandar Torkmen stations with input parameters of T, RH, W and S had the most accurate predictions and were proposed for precise estimation of PE. The findings of the current study indicated that the PE values may be accurately estimated with few easily measured meteorological parameters.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Afan Hasan ◽  
Oya Kalıpsız ◽  
Selim Akyokuş

Although the vast majority of fundamental analysts believe that technical analysts’ estimates and technical indicators used in these analyses are unresponsive, recent research has revealed that both professionals and individual traders are using technical indicators. A correct estimate of the direction of the financial market is a very challenging activity, primarily due to the nonlinear nature of the financial time series. Deep learning and machine learning methods on the other hand have achieved very successful results in many different areas where human beings are challenged. In this study, technical indicators were integrated into the methods of deep learning and machine learning, and the behavior of the traders was modeled in order to increase the accuracy of forecasting of the financial market direction. A set of technical indicators has been examined based on their application in technical analysis as input features to predict the oncoming (one-period-ahead) direction of Istanbul Stock Exchange (BIST100) national index. To predict the direction of the index, Deep Neural Network (DNN), Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression (LR) classification techniques are used. The performance of these models is evaluated on the basis of various performance metrics such as confusion matrix, compound return, and max drawdown.


2016 ◽  
Author(s):  
J. Huttunen ◽  
H. Kokkola ◽  
T. Mielonen ◽  
M. Mononen ◽  
A. Lipponen ◽  
...  

Abstract. In order to have a good estimate of the current forcing by anthropogenic aerosols knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from 1990’s onward. One option to lengthen the AOD time series beyond 1990’s is to retrieve AOD from surface solar radiation (SSR) measurements done with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a nonlinear regression method and four machine learning methods (Gaussian Process, Neural Network, Random Forest and Support Vector Machine) with AOD observations done with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and nonlinear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the Random Forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, Neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval where as the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during the observation period.


2020 ◽  
Vol 17 ◽  
Author(s):  
Juntao Li ◽  
Kanglei Zhou ◽  
Bingyu Mu

: With the rapid development of high-throughput techniques, mass spectrometry has been widely used for largescale protein analysis. To search for the existing proteins, discover biomarkers, and diagnose and prognose diseases, machine learning methods are applied in mass spectrometry data analysis. This paper reviews the applications of five kinds of machine learning methods to mass spectrometry data analysis from an algorithmic point of view, including support vector machine, decision tree, random forest, naive Bayesian classifier and deep learning.


2019 ◽  
Vol 8 (10) ◽  
pp. 463 ◽  
Author(s):  
Nikola Kranjčić ◽  
Damir Medak ◽  
Robert Župan ◽  
Milan Rezo

Rapid urbanization in cities can result in a decrease in green urban areas. Reductions in green urban infrastructure pose a threat to the sustainability of cities. Up-to-date maps are important for the effective planning of urban development and the maintenance of green urban infrastructure. There are many possible ways to map vegetation; however, the most effective way is to apply machine learning methods to satellite imagery. In this study, we analyze four machine learning methods (support vector machine, random forest, artificial neural network, and the naïve Bayes classifier) for mapping green urban areas using satellite imagery from the Sentinel-2 multispectral instrument. The methods are tested on two cities in Croatia (Varaždin and Osijek). Support vector machines outperform random forest, artificial neural networks, and the naïve Bayes classifier in terms of classification accuracy (a Kappa value of 0.87 for Varaždin and 0.89 for Osijek) and performance time.


Sign in / Sign up

Export Citation Format

Share Document