scholarly journals Rational use of animal origin by-products in accordance to the ecological legislation of Ukraine and European Union

2019 ◽  
Vol 3 (26) ◽  
pp. 25-30
Author(s):  
M. Koliada ◽  
◽  
V. Plavan ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 20-25
Author(s):  
A.I. Zharinov ◽  
O.V. Kuznetsova ◽  
L.A. Tekutieva
Keyword(s):  

2020 ◽  
Vol 21 (12) ◽  
pp. 928-937
Author(s):  
Liyun Zhang ◽  
Xiaoqing Xu ◽  
Sara Badawy ◽  
Awais Ihsan ◽  
Zhenli Liu ◽  
...  

: As a kind of haemoglobin, cytochrome P450 enzymes (CYP450) participate in the metabolism of many substances, including endogenous substances, exogenous substances and drugs. It is estimated that 60% of common prescription drugs require bioconversion through CYP450. The influence of macrolides on CYP450 contributes to the metabolism and drug-drug interactions (DDIs) of macrolides. At present, most studies on the effects of macrolides on CYP450 are focused on CYP3A, but a few exist on other enzymes and drug combinations, such as telithromycin, which can decrease the activity of hepatic CYP1A2 and CYP3A2. This article summarizes some published applications of the influence of macrolides on CYP450 and the DDIs of macrolides caused by CYP450. And the article may subsequently guide the rational use of drugs in clinical trials. To a certain extent, poisoning caused by adverse drug interactions can be avoided. Unreasonable use of macrolide antibiotics may enable the presence of residue of macrolide antibiotics in animal-origin food. It is unhealthy for people to eat food with macrolide antibiotic residues. So it is of great significance to guarantee food safety and protect the health of consumers by the rational use of macrolides. This review gives a detailed description of the influence of macrolides on CYP450 and the DDIs of macrolides caused by CYP450. Moreover, it offers a perspective for researchers to further explore in this area.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Johannes Haedrich ◽  
Claudia Stumpf ◽  
Michael S. Denison

Abstract Background Low maximum and action levels set by the European Union for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in pig meat (pork) have led to a demand for reliable and cost-effective bioanalytical screening methods implemented upstream of gas chromatography/high-resolution mass spectrometry confirmatory technology, that can detect low levels of contamination in EU-regulated foods with quick turn-around times. Results Based on the Chemically Activated LUciferase gene eXpression (CALUX) bioassay, extraction and clean-up steps were optimized for recovery and reproducibility within working ranges significantly lower than in current bioassays. A highly sensitive “3rd generation” recombinant rat hepatoma cell line (H4L7.5c2) containing 20 dioxin responsive elements was exposed to pork sample extracts, and their PCDD/Fs and DL-PCBs levels were evaluated by measuring luciferase activity. The method was validated according to the provisions of Commission Regulation (EU) 2017/644 of 5 April 2017 with spiking experiments performed selectively for PCDD/Fs and DL-PCBs and individual calibration for PCDD/Fs, DL-PCBs and the calculated sum of PCDD/Fs and DL-PCBs. The resulting performance parameters met all legal specifications as confirmed by re-calibration using authentic samples. Cut-off concentrations for assessing compliance with low maximum levels and action levels set for PCDD/Fs and DL-PCBs within a range of 0.50–1.25 pg WHO-TEQ/g fat were derived, ensuring low rates of false-compliant results (ß-error < 1%) and keeping the rate of false-noncompliant results well under control (α-error < 12%). Conclusions We present a fast and efficient bioanalytical routine method validated according to the European Union’s legal requirements on the basis of authentic samples, allowing the analyst to reliably identify pork samples and any other EU-regulated foods of animal origin suspected to be noncompliant with a high level of performance and turn-around times of 52 h. This was facilitated in particular by a quick and efficient extraction step followed by selective clean-up, use of a highly sensitive “3rd generation” H4L7.5c2 recombinant rat hepatoma cell CALUX bioassay, and optimized assay performance with improved calibrator precision and reduced lack-of-fit errors. New restrictions are proposed for the calibrator bias and the unspecific background contribution to reportable results. The procedure can utilize comparably small sample amounts and allows an annual throughput of 840–1000 samples per lab technician. The described bioanalytical method contributes to the European Commission's objective of generating accurate and reproducible analytical results according to Commission Regulation (EU) 2017/644 across the European Union.


2013 ◽  
Vol 7 (1) ◽  
pp. 106-118

The formation of Disinfection By-Products (DBPs) in drinking water results from the reaction of chlorine or other disinfectants added to the water with naturally occurring organic materials, and has raised concerns during the last decades because these compounds are harmful for human health. During the present work, the formation of different categories of DBPs was investigated in four water treatment plants (WTP) using chlorine as disinfectant, and in selected points of the distribution network of Athens, Greece, which is supplied from these four WTP, during a period of ten years. The concentrations of DBPs were generally low and the annual mean concentrations always well below the regulatory limit of the European Union (EU) for the total trihalomethanes (TTHMs). The haloacetic acids (HAAs) have not been regulated in the EU, but during this investigation they often occurred in significant levels, sometimes exceeding the levels of TTHMs, which highlights the importance of their monitoring in drinking water. Apart from THMs and HAAs, several other DBPs species were detected at much lower concentrations in the chlorinated waters: chloral hydrate, haloketones and, in a limited number of cases, haloacetonitriles.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 665 ◽  
Author(s):  
Tizian Klingel ◽  
Jonathan I. Kremer ◽  
Vera Gottstein ◽  
Tabata Rajcic de Rezende ◽  
Steffen Schwarz ◽  
...  

The coffee plant Coffea spp. offers much more than the well-known drink made from the roasted coffee bean. During its cultivation and production, a wide variety of by-products are accrued, most of which are currently unused, thermally recycled, or used as animal feed. The aim of this review is to provide an overview of novel coffee products in the food sector and their current legal classification in the European Union (EU). For this purpose, we have reviewed the literature on the composition and safety of coffee flowers, leaves, pulp, husk, parchment, green coffee, silver skin, and spent coffee grounds. Some of these products have a history of consumption in Europe (green coffee), while others have already been used as traditional food in non-EU-member countries (coffee leaves, notification currently pending), or an application for authorization as novel food has already been submitted (husks, flour from spent coffee grounds). For the other products, toxicity and/or safety data appear to be lacking, necessitating further studies to fulfill the requirements of novel food applications.


Sign in / Sign up

Export Citation Format

Share Document