scholarly journals EXPERIMENTAL INVESTIGATION ON AN EXHAUST EMISSION CHARACTERISTICS OF A COMPRESSION IGNITION ENGINE FUELED WITH DIESEL-WATER EMULSION

2021 ◽  
Vol 21 (1) ◽  
pp. 35-45
Author(s):  
Abdulrahman Shakir Mahmood ◽  
Haqi I. Qatta ◽  
Saadi M. D. Al-Nuzal

One of the main sources of global air pollution is the undesirable gas emissions from diesel engines, as well as the accompanied particulate matters (PM). Consequently, the reduction of their amount and quality is highly recommended for clean environment. The present work includes an attempt to use diesel-water emulsion as a fuel on compression ignition (CI) engine emissions and to investigate its effect on these hurtful discharges. For this reason, tests are carried out on a single cylinder, 4-stroke CI engine with steady speed (1500 rpm) and different loads (0-100 %) operated with various proportions of diesel-water emulsions and compared it to the diesel fuel. Four samples of diesel-water emulsions are prepared at ratios of (5, 10, 15 and 20 %) by water volume in diesel and with help of Tween 20 and Oleic Acid as a surfactant to maintain its stability for long periods of time. Gas emissions of the engine are recorded for CO2, CO, HC, and NOX using an exhaust gas analyzer and smoke opacity using a device of smoke meter. Results reveal that the diesel-water emulsion significantly decreases the NOX emissions and smoke opacity. The highest reduction ratio for NOX and smoke opacity are found in case of fuel emulsion DW20, with values of 32.5 % and 39 % respectively, in comparison with that of diesel fuel.

A study on performance and emission of compression ignition (CI) engine has been made by utilizing biogas blends at different loads. The flow rate of biogas with air was important parameter to get the desired results. The blend of 30% with diesel was optimum which yielded optimum emission characteristics. Higher specific fuel consumption and lower brake thermal efficiency was observed when the proportion of biogas mixes with diesel in comparison with neat diesel. The out coming results from the experimental investigation exhibited reduction in NOx emission and smoke opacity. The other emissions hydrocarbon (HC) and carbon monoxide (CO) has been higher than diesel. The use of biogas as an alternative fuel in correct proportion with diesel can meet the energy demand on scarcity of conventional fuel.


2021 ◽  
Vol 2 (1) ◽  
pp. 25-31
Author(s):  
Lochan Kendra Devkota ◽  
Surya Prasad Adhikari

In this study, different performance parameters of a Compression Ignition (CI) engine fueled with waste cooking oil biodiesel blends with diesel in different percentage volumes of 5 % biodiesel and 95 % diesel (W5), 10 % biodiesel and 90 % diesel (W10), 15 % biodiesel and 85 % diesel (W15) and 20 % biodiesel and 80 % diesel (W20) were tested experimentally. First, biodiesel was produced from waste cooking oil by transesterification process. The physical-chemical properties of biodiesel and W20 were tested. The tested properties of W20 were found to American Society for Testing and Materials (ASTM) standards near to diesel fuel. Subsequently, test of diesel and biodiesel blended fuels were carried out using 15:1 compression ratio on Kirloskar Single Cylinder Compression Ignition Engine at 1500 rpm on varying loads. The engine performance parameters for biodiesel blends such as Indicated Power (IP), Brake Power (BP), Brake Mean Effective Pressure (BMEP), Brake Thermal Efficiency (BTE), Specific Fuel Consumption (SFC) and Mechanical Efficiency (ME) against load in comparison to diesel fuel were obtained and verified those with diesel fuel. IP for diesel, W5, W10, W15 and W20 at load of 12 kg are 4.3 kW, 4.8 kW, 4.7 kW, 4.75 kW and 4.2 kW respectively. ME of W20 at 12 kg load is less by 4.1 % than diesel. The difference in SFC of diesel and W20 at 12 kg load was 0.27 kg/kWh. The experimental outcomes confirm that the IP and SFC of blended biodiesel were slightly superior. Correspondingly, BP and BMEP were also found comparable to diesel fuel.


2020 ◽  
Vol 39 (3) ◽  
pp. 752-760
Author(s):  
H.A. Dandajeh ◽  
Y.S. Sanusi ◽  
T.O. Ahmadu

This paper presents an experimental investigation into the exhaust emissions characteristics of a gardener Compression Ignition (CI) Engine fuelled with rapeseed methyl Esther (RME) and fossil diesel under lean equivalence ratios (0.2≤ φ ≤0.8). The experiments were carried out at engine speeds of 750 and 1250 rpm under five different loads. The experimental results showed that NOx and CO2 emissions increased while emissions of HC, O2 and CO decreased with increasing equivalence ratio, exhaust temperature, brake mean effective pressure and specific fuel consumption. All exhaust emissions were found to decrease with increasing engine speed from 750 to 1250 rpm. There was reduction in exhaust emissions of RME over fossil diesel by 0.06% for O2, 84% for CO and 4.7% for CO2 at 750rpm. At higher speed of 1250rpm however, RME was observed having higher NOx and CO2 but relatively lower O2 and CO than the fossil diesel. Keywords— Exhaust Emission, Compression ignition engine, rapeseed methyl Esther, engine speed, fossil diesel


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 511-522 ◽  
Author(s):  
Ilker Ors ◽  
Ali Kahraman ◽  
Murat Ciniviz

This study aimed to investigate the effects on performance, emission, and combustion characteristics of adding biodiesel and bioethanol to diesel fuel. Diesel fuel and blend fuels were tested in a water-cooled compression ignition engine with direct injection. Test results showed that brake specific fuel consumption and volumetric efficiency increased by about 30.6% and 3.7%, respectively, with the addition of bioethanol to binary blend fuels. The results of the blend fuel?s combustion analysis were similar to the diesel fuel?s results. Bioethanol increased maximal in-cylinder pressure compared to biodiesel and diesel fuel at both 1400 rpm and 2800 rpm. Emissions of CO increased by an amount of about 80% for fuels containing a high level of bioethanol when compared to CO emissions for diesel fuel. Using biodiesel, NO emissions increased by an average of 31.3%, HC emissions decreased by an average of 39.25%, and smoke opacity decreased by an average of 6.5% when compared with diesel fuel. In addition, when using bioethanol, NO emissions and smoke opacity decreased by 55% and 17% on average, respectively, and HC emissions increased by an average of 53% compared with diesel fuel.


Author(s):  
Gopal Kumar Deshmukh ◽  
Ammenur Rehman ◽  
Rajesh Gupta

Jatropha-curcas biodiesel has recently been considered as one of the potential renewable energy sources in Asia. This biodiesel is produced through the transesterification process of the non-edible oil obtained from Jatropha-curcas. The properties of this biodiesel are quite similar to those of diesel fuel. However, high viscosity of pure Jatropha-curcas biodiesel adversely affects engine performance. Hence, the percentage of Jatrophacurcas biodiesel that will not cause any adverse effect on the engine must be determined. In this context, this paper experimentally investigates the performance and exhaust emission characteristics of a direct injection compression ignition engine fuelled with 25%, 50% and 100% volume basis Jatropha-curcas biodiesel with diesel. Results showed that the Jatropha-curcas biodiesel and its blends demonstrated lower values for brake thermal efficiency and exhaust emission levels than diesel, but not for nitrogen oxide levels and brake specific fuel consumption. It was observed that the blend containing 25% Jatropha-curcas biodiesel (BD25) was the best alternative for diesel fuel based on engine emissions and overall performance. Therefore, BD25 could be considered a potential alternative fuel for compression ignition engines.


Author(s):  
Marwan Effendy ◽  
Arif Surono ◽  
Eqwar Saputra ◽  
Nurmuntaha Agung Nugraha

Author(s):  
Yuanjiang Pei ◽  
Marco Mehl ◽  
Wei Liu ◽  
Tianfeng Lu ◽  
William J. Pitz ◽  
...  

A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition (CI) engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multicomponent mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine (RCM) and shock tube (ST), speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in STs and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11,754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 700–1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the engine combustion network (ECN) website. These multidimensional simulations were performed using a representative interactive flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regard to the predictions of ignition delay and lift-off length at different ambient temperatures.


Sign in / Sign up

Export Citation Format

Share Document