scholarly journals Variable geometry wing-box: toward a robotic morphing wing.

Author(s):  
Amin Moosavian

The ability to vary the geometry of a wing to adapt to different flight conditions can significantly improve the performance of an aircraft. However, the realization of any morphing concept will typically be accompanied by major challenges. Specifically, the geometrical constraints that are imposed by the shape of the wing and the magnitude of the air and inertia loads make the usage of conventional mechanisms inefficient for morphing applications. Such restrictions have served as inspirations for the design of a modular morphing concept, referred to as the Variable Geometry Wing-box (VGW). The design for the VGW is based on a novel class of reconfigurable robots referred to as Parallel Robots with Enhanced Stiffness (PRES) which are presented in this dissertation. The underlying feature of these robots is the efficient exploitation of redundancies in parallel manipulators. There have been three categories identified in the literature to classify redundancies in parallel manipulators: 1) actuation redundancy, 2) kinematic redundancy, and 3) sensor redundancy. A fourth category is introduced here, referred to as 4) static redundancy. The latter entails several advantages traditionally associated only with actuation redundancy, most significant of which is enhanced stiffness and static characteristics, without any form of actuation redundancy. Additionally, the PRES uses the available redundancies to 1) control more Degrees of Freedom (DOFs) than there are actuators in the system, that is, under-actuate, and 2) provide multiple degrees of fault tolerance. Although the majority of the presented work has been tailored to accommodate the VGW, it can be applied to any comparable system, where enhanced stiffness or static characteristics may be desired without actuation redundancy. In addition to the kinematic and the kinetostatic analyses of the PRES, which are developed and presented in this dissertation along with several case-studies, an optimal motion control algorithm for minimum energy actuation is proposed. Furthermore, the optimal configuration design for the VGW is studied. The optimal configuration design problem is posed in two parts: 1) the optimal limb configuration, and 2) the optimal topological configuration. The former seeks the optimal design of the kinematic joints and links, while the latter seeks the minimal compliance solution to their placement within the design space. In addition to the static and kinematic criteria required for reconfigurability, practical design considerations such as fail-safe requirements and design for minimal aeroelastic impact have been included as constraints in the optimization process. The effectiveness of the proposed design, analysis, and optimization is demonstrated through simulation and a multi-module reconfigurable prototype.

2021 ◽  
Author(s):  
Amin Moosavian

The ability to vary the geometry of a wing to adapt to different flight conditions can significantly improve the performance of an aircraft. However, the realization of any morphing concept will typically be accompanied by major challenges. Specifically, the geometrical constraints that are imposed by the shape of the wing and the magnitude of the air and inertia loads make the usage of conventional mechanisms inefficient for morphing applications. Such restrictions have served as inspirations for the design of a modular morphing concept, referred to as the Variable Geometry Wing-box (VGW). The design for the VGW is based on a novel class of reconfigurable robots referred to as Parallel Robots with Enhanced Stiffness (PRES) which are presented in this dissertation. The underlying feature of these robots is the efficient exploitation of redundancies in parallel manipulators. There have been three categories identified in the literature to classify redundancies in parallel manipulators: 1) actuation redundancy, 2) kinematic redundancy, and 3) sensor redundancy. A fourth category is introduced here, referred to as 4) static redundancy. The latter entails several advantages traditionally associated only with actuation redundancy, most significant of which is enhanced stiffness and static characteristics, without any form of actuation redundancy. Additionally, the PRES uses the available redundancies to 1) control more Degrees of Freedom (DOFs) than there are actuators in the system, that is, under-actuate, and 2) provide multiple degrees of fault tolerance. Although the majority of the presented work has been tailored to accommodate the VGW, it can be applied to any comparable system, where enhanced stiffness or static characteristics may be desired without actuation redundancy. In addition to the kinematic and the kinetostatic analyses of the PRES, which are developed and presented in this dissertation along with several case-studies, an optimal motion control algorithm for minimum energy actuation is proposed. Furthermore, the optimal configuration design for the VGW is studied. The optimal configuration design problem is posed in two parts: 1) the optimal limb configuration, and 2) the optimal topological configuration. The former seeks the optimal design of the kinematic joints and links, while the latter seeks the minimal compliance solution to their placement within the design space. In addition to the static and kinematic criteria required for reconfigurability, practical design considerations such as fail-safe requirements and design for minimal aeroelastic impact have been included as constraints in the optimization process. The effectiveness of the proposed design, analysis, and optimization is demonstrated through simulation and a multi-module reconfigurable prototype.


2014 ◽  
Vol 51 (3) ◽  
pp. 811-823 ◽  
Author(s):  
Amin Moosavian ◽  
Fengfeng Xi ◽  
Seyed M. Hashemi

Robotica ◽  
2009 ◽  
Vol 28 (3) ◽  
pp. 359-368 ◽  
Author(s):  
Houssem Abdellatif ◽  
Bodo Heimann

SUMMARYThe paper presents a self-contained approach for the dynamics identification of six degrees of freedom (DOF) parallel robots. Major feature is the consequent consideration of structural properties of such machines to provide an experimentally adequate identification method. The known periodic excitation is modified and enhanced to take the actuator coupling as well as the numerical solution of the direct kinematics into account. The benefits of explicit frequency-domain data filtering are demonstrated. Additionally, a new implementation of the maximum-likelihood estimator allows for automatic tuning of the data filter. The issue of optimal input experiment design is also discussed and substantiated with extensive experiments.


Author(s):  
Saeed Behzadipour ◽  
Robert Dekker ◽  
Amir Khajepour ◽  
Edmon Chan

The growing needs for high speed positioning devices in the automated manufacturing industry have been challenged by robotic science for more than two decades. Parallel manipulators have been widely used for this purpose due to their advantage of lower moving inertia over the conventional serial manipulators. Cable actuated parallel robots were introduced in 1980’s to reduce the moving inertia even further. In this work, a new cable-based parallel robot is introduced. For this robot, the cables are used not only to actuate the end-effector but also to apply the necessary kinematic constraints to provide three pure translational degrees of freedom. In order to maintain tension in the cables, a passive air cylinder is used to push the end-effector against the stationary platform. In addition to low moving inertia, the new design benefits from simplicity and low manufacturing cost by eliminating joints from the robot’s mechanism. The design procedure and the results of experiments will be discussed in the following.


Author(s):  
Grigore Gogu

The paper presents singularity-free fully-isotropic T1R2-type parallel manipulators (PMs) with three degrees of freedom. The mobile platform has one independent translation (T1) and two rotations (R2). A method is proposed for structural synthesis of fully-isotropic T1R2-type PMs based on the theory of linear transformations. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian matrix mapping the two vector spaces of fully-isotropic T1R2-type PMs presented in this paper is the 3x3 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. As far as we are aware, this paper presents for the first time in the literature solutions of singularity-free T1R2-type PMs with decoupled an uncoupled motions, along with the fully-isotropic solutions.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Adrián Peidró ◽  
José María Marín ◽  
Arturo Gil ◽  
Óscar Reinoso

This paper analyzes the multiplicity of the solutions to forward kinematics of two classes of analytic robots: 2RPR-PR robots with a passive leg and 3-RPR robots with nonsimilar flat platform and base. Since their characteristic polynomials cannot have more than two valid roots, one may think that triple solutions, and hence nonsingular transitions between different assembly modes, are impossible for them. However, the authors show that the forward kinematic problems of these robots always admit quadruple solutions and obtain analytically the loci of points of the joint space where these solutions occur. Then, it is shown that performing trajectories in the joint space that enclose these points can produce nonsingular transitions, demonstrating that it is possible to design simple analytic parallel robots with two and three degrees-of-freedom (DOF) and the ability to execute these transitions.


Author(s):  
R. Jha ◽  
D. Chablat ◽  
F. Rouillier ◽  
G. Moroz

Trajectory planning is a critical step while programming the parallel manipulators in a robotic cell. The main problem arises when there exists a singular configuration between the two poses of the end-effectors while discretizing the path with a classical approach. This paper presents an algebraic method to check the feasibility of any given trajectories in the workspace. The solutions of the polynomial equations associated with the trajectories are projected in the joint space using Gröbner based elimination methods and the remaining equations are expressed in a parametric form where the articular variables are functions of time t unlike any numerical or discretization method. These formal computations allow to write the Jacobian of the manipulator as a function of time and to check if its determinant can vanish between two poses. Another benefit of this approach is to use a largest workspace with a more complex shape than a cube, cylinder or sphere. For the Orthoglide, a three degrees of freedom parallel robot, three different trajectories are used to illustrate this method.


Robotica ◽  
2019 ◽  
Vol 38 (3) ◽  
pp. 375-395 ◽  
Author(s):  
Sung Wook Hwang ◽  
Jeong-Hyeon Bak ◽  
Jonghyun Yoon ◽  
Jong Hyeon Park

SummaryCable-driven parallel robots (CDPRs) possess a lot of advantages over conventional parallel manipulators and link-based robot manipulators in terms of acceleration due to their low inertia. This paper deals with under-constrained CDPRs, which manipulate the end-effector to carrying the payload by using a number of cables less than six, often used preferably owing to their simple structures. Since a smaller number of cables than six are used, the end-effector of CDPR has uncontrollable degrees of freedom and that causes swaying motion and oscillations. In this paper, a scheme to curb on the unwanted oscillation of the end-effector of the CDPR with three cables is proposed based on multimode input shaping. The precise dynamic model of the under-constrained CDPR is obtained to find natural frequencies, which depends on the position of the end-effector. The advantage of the proposed method is that it is practicable to generate the trajectories for vibration suppression based on multi-mode input-shaping scheme in spite of the complexity in the dynamics and the difficulty in computing the natural frequencies of the CDPR, which are required in any input-shaping scheme. To prove the effectiveness of the proposed method, computer simulations and experiments were carried out by using 3-D motion for CDPR with three cables.


Author(s):  
Qimin Xu

<p>In this paper, an approach for orientation singularity analysis of parallel manipulators (PMs) is proposed by introducing several performance indices referred to the<br />unique form of screw based Jacobian in the velocity transmission as well as force transmission. Here, to prove the effectiveness of the approach, an example of 3 degrees of freedom (DOF) prismatic-revolute-spherical (PRS) parallel manipulator (PM) is first presented to illustrate the fact that the distributions of singularity boundary of the proposed approach is consistence with the result referred to nonredunant PMs by Liu et al. [22]. Further, the proposed approach is an appropriate one not only for nonredunant PMs, but also for a class of redunant PMs by providing another example of the redunant variable geometry truss (VGT) PM, since the performance index of orientation singularity for the manipulator can be<br />created only by determining the unique form of screw based Jacobian.</p>


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu ◽  
Jun Wang

The paper presents a simple and effective kinematic model and methodology to assess and evaluate the extent of the position uncertainty caused by joint clearances for multiple-loop linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting's rotatability laws. The significant contributions include (1) the clearance link model for a P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearances from the input error, (2) the generality of the method, which is effective for multiloop linkages and parallel manipulators, and (3) settling the dispute on the position uncertainty effect to parallel and serial robots due to joint clearance. The discussion is illustrated and carried out through symmetrically configured planar 8 bar parallel robots. It is found that at a target position, the uncertainty region of a three degrees-of-freedom (DOF) three-leg parallel robot is enclosed by a hexagon with curve edges, while that of its serial counterpart is enclosed by a circle included in the hexagon. A numerical example is presented. The finding and proof, though only based on three-leg planar 8 bar parallel robots, may have a wider implication suggesting that based on the kinematic effect of joint clearance, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in not only parallel robots but also single-DOF linkages cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


Sign in / Sign up

Export Citation Format

Share Document