scholarly journals An investigation into the free vibrations of carbon nanotubes using analytical and finite element methods

Author(s):  
Ishan Ali Khan

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of applications in which they are, or can be potentially, employed. Hence, it is important that all the properties of carbon nanotubes are studied extensively. This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, with and without an elastic medium surrounding them, by using Finite Element Method (FEM) and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams coupled with van der Waals interaction forces. For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted residual approach. The natural frequencies and mode shapes are derived from eigenvalues and eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue problem is obtained by enforcing displacement and load end conditions to the exact solution of single equation achieved by combining the coupled governing equations. The natural frequencies are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies obtained for all the cases, are in agreement with the values provided in literature.

2021 ◽  
Author(s):  
Ishan Ali Khan

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of applications in which they are, or can be potentially, employed. Hence, it is important that all the properties of carbon nanotubes are studied extensively. This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, with and without an elastic medium surrounding them, by using Finite Element Method (FEM) and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams coupled with van der Waals interaction forces. For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted residual approach. The natural frequencies and mode shapes are derived from eigenvalues and eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue problem is obtained by enforcing displacement and load end conditions to the exact solution of single equation achieved by combining the coupled governing equations. The natural frequencies are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies obtained for all the cases, are in agreement with the values provided in literature.


2021 ◽  
Author(s):  
Heenkenda Jayasinghe

Dynamic Finite Element (DFE) and conventional finite element formulations are developed to study the flexural - torsional vibration and stability of an isotropic, homogeneous and linearly elastic pre-loaded beam subjected to an axial load and end-moment. Various classical boundary conditions are considered. Elementary Euler - Bernoulli bending and St. Venant torsion beam theories were used as a starting point to develop the governing equations and the finite element solutions. The nonlinear Eigenvalue problem resulted from the DFE method was solved using a program code written in MATLAB and the natural frequencies and mode shapes of the system were determined form the Eigenvalues and Eigenvectors, respectively. Similarly, a linear Eigenvalue problem was formulated and solved using a MATLAB code for the conventional FEM method. The conventional FEM results were validated against those available in the literature and ANSYS simulations and the DFE results were compared with the FEM results. The results confirmed that tensile forces increased the natural frequencies, which indicates beam stiffening. On the contrary, compressive forces reduced the natural frequencies, suggesting a reduction in beam stiffness. Similarly, when an end-moment was applied the stiffness of the beam and the natural frequencies diminished. More importantly, when a force and end-moment were acting in combination, the results depended on the direction and magnitude of the axial force. Nevertheless, the stiffness of the beam is more sensitive to the changes in the magnitude and direction of the axial force compared to the moment. A buckling analysis of the beam was also carried out to determine the critical buckling end-moment and axial compressive force.


2021 ◽  
Author(s):  
Heenkenda Jayasinghe

Dynamic Finite Element (DFE) and conventional finite element formulations are developed to study the flexural - torsional vibration and stability of an isotropic, homogeneous and linearly elastic pre-loaded beam subjected to an axial load and end-moment. Various classical boundary conditions are considered. Elementary Euler - Bernoulli bending and St. Venant torsion beam theories were used as a starting point to develop the governing equations and the finite element solutions. The nonlinear Eigenvalue problem resulted from the DFE method was solved using a program code written in MATLAB and the natural frequencies and mode shapes of the system were determined form the Eigenvalues and Eigenvectors, respectively. Similarly, a linear Eigenvalue problem was formulated and solved using a MATLAB code for the conventional FEM method. The conventional FEM results were validated against those available in the literature and ANSYS simulations and the DFE results were compared with the FEM results. The results confirmed that tensile forces increased the natural frequencies, which indicates beam stiffening. On the contrary, compressive forces reduced the natural frequencies, suggesting a reduction in beam stiffness. Similarly, when an end-moment was applied the stiffness of the beam and the natural frequencies diminished. More importantly, when a force and end-moment were acting in combination, the results depended on the direction and magnitude of the axial force. Nevertheless, the stiffness of the beam is more sensitive to the changes in the magnitude and direction of the axial force compared to the moment. A buckling analysis of the beam was also carried out to determine the critical buckling end-moment and axial compressive force.


2020 ◽  
Vol 6 (4) ◽  
pp. 79
Author(s):  
D. S. Craveiro ◽  
M. A. R. Loja

The present work aimed to characterize the free vibrations’ behaviour of nanocomposite plates obtained by incorporating graded distributions of carbon nanotubes (CNTs) in a polymeric matrix, considering the carbon nanotubes’ agglomeration effect. This effect is known to degrade material properties, therefore being important to predict the consequences it may bring to structures’ mechanical performance. To this purpose, the elastic properties’ estimation is performed according to the two-parameter agglomeration model based on the Eshelby–Mori–Tanaka approach for randomly dispersed nano-inclusions. This approach is implemented in association with the finite element method to determine the natural frequencies and corresponding mode shapes. Three main agglomeration cases were considered, namely, agglomeration absence, complete agglomeration, and partial agglomeration. The results show that the agglomeration effect has a negative impact on the natural frequencies of the plates, regardless the CNTs’ distribution considered. For the corresponding vibrations’ mode shapes, the agglomeration effect was shown in most cases not to have a significant impact, except for two of the cases studied: for a square plate and a rectangular plate with symmetrical and unsymmetrical CNTs’ distribution, respectively. Globally, the results confirm that not accounting for the nanotubes’ agglomeration effect may lead to less accurate elastic properties and less structures’ performance predictions.


1967 ◽  
Vol 89 (1) ◽  
pp. 23-29 ◽  
Author(s):  
D. A. Frohrib ◽  
R. Plunkett

The natural frequencies of lateral vibration of a long drill string in static tension under its own weight are primarily the same as those of the equivalent catenary. These frequencies and the mode shapes are affected to a certain extent by the bending stiffness and to a greater extent by the static deflection curve due to lateral deflection of the bottom end. In this paper, the governing equations are derived and general solutions are given in an asymptotic expansion with the bending stiffness as the parameter. Specific numerical results are given in dimensionless form for the first three natural frequencies for a very wide range of horizontal tension and several appropriate values of bending stiffness for zero vertical static force at the bottom.


Author(s):  
Romuald Rzadkowski ◽  
Artur Maurin

Considered here was the effect of multistage coupling on the dynamics of a rotor consisting of eight mistuned bladed discs on a solid shaft. Each bladed disc had a different number of rotor blades. Free vibrations were examined using finite element representations of rotating single blades, bladed discs, and the entire rotor. In this study the global rotating mode shapes of eight flexible mistuned bladed discs on shaft assemblies were calculated, taking into account rotational effects such as centrifugal stiffening. The thus obtained natural frequencies of the blade, shaft, bladed disc and entire shaft with discs were carefully examined to discover resonance conditions and coupling effects. This study found that mistuned systems cause far more intensive multistage coupling than tuned ones. The greater the mistuning, the more intense the multistage coupling.


Author(s):  
Romuald Rza˛dkowski ◽  
Marcin Drewczynski

Considered here is the effect of multistage coupling on the dynamics of a rotor consisting of eight bladed discs on a solid shaft. Each bladed disc had a different number of rotor blades. Free vibrations were examined using finite element representations of rotating single blades, bladed discs, and the entire rotor. In this study, the global rotating mode shapes of flexible tuned bladed discs-shaft assemblies were calculated, taking into account rotational effects, such as centrifugal stiffening. The thus obtained natural frequencies of the blade, the shaft, the bladed disc, and the entire shaft with discs were carefully examined to discover resonance conditions and coupling effects. This study found that the flexible modes of the tuned bladed discs affected by shaft motion were those with zero, one and two nodal diameters. In these modes shaft deflection was clearly visible. In forced vibration analysis a different EO excitation was applied for each stage. The importance of using models with different numbers of blades on each disc is apparent when compared with earlier results concerning discs with identical numbers of blades. Here the model of 8 discs with an equal number of blades on each disc is referred to as (Model 1), and the model of 8 discs with a different number of blades on each disc is referred to as (Model 2).


2021 ◽  
Vol 9 (3) ◽  
pp. 251-262
Author(s):  
Gweon Sik Kim ◽  
Sang Jin Oh ◽  
Tae Eun Lee ◽  
Byoung Koo Lee

This paper deals with free vibrations of the axially functionally graded (AFG) horseshoe arch. The modulus of elasticity and the mass density of AFG material of arch are chosen as a univariate quadratic function. The differential equations with the boundary conditions that govern the free vibration of such arch are derived and numerically solved to calculate natural frequencies and mode shapes. Natural frequencies of this study agree well with those of the finite element ADINA. Parametric studies of the geometrical and mechanical properties of the arch on frequencies and mode shapes are performed and extensively discussed.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Ming Ji ◽  
Kazuaki Inaba

Abstract This paper presents an easy-to-use theoretical method and an efficient numerical method for solving free vibrations and transient responses of a circular plate coupled with fluid subjected to impact loadings and provides insights into various coupling cases with these developed methods. The Kirchhoff plate theory, Mindlin–Reissner plate theory, and the linear velocity potential function are used. The wet mode of the coupled system is described as the superposition of dry modes of the plate, which has been considered in few studies. The natural frequencies and corresponding mode shapes are solved using the orthogonality of dry modes. The transient responses of the plate are then solved using the superposition of the wet modes and the orthogonality of dry modes. To validate the theoretical results, an efficient and flexible finite element method is proposed and verified by comparing with commercial software. The four-node mixed interpolation of the tensorial component quadrilateral plate finite element (MITC4) and the eight-node acoustic pressure element are used to model the plate and the fluid, respectively. The theoretical and numerical methods provide reliable and accurate results. Parametric studies are performed to investigate the influence of geometric sizes, plate material properties, and fluid properties on the natural frequencies of the coupled system. A coupling parameter of fluid–structure interaction is proposed. The nondimensional added virtual mass incremental (NAVMI) factor decreases as the coupling parameter increases. Besides, the influence of fluid on wet modes of the plate decreases with the order.


1967 ◽  
Vol 18 (4) ◽  
pp. 309-320 ◽  
Author(s):  
W. Carnegie ◽  
J. Thomas

SummaryThe effect of depth taper on the flexural vibration characteristics of a beam of uniform width is investigated in this paper. The frequency parameters and mode shapes for the first five modes of vibration of tapered beams are presented for a wide range of depth taper. The Euler-Bernoulli equation of a beam is reduced to an eigenvalue problem and its eigenvalues and eigenvectors are obtained by using a digital computer. The theoretical results are compared with those of other authors and with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document