scholarly journals Life cycle costing analysis using the mechanistic-empirical pavement design guide for flexible pavements

Author(s):  
Omar M. Sharif

The Mechanistic-Empirical Pavement Design Guide (MEPDG), developed by the American Association of State Highway and Transportation Officials (AASHTO) under the directive of the U.S. National Cooperative Highway Research Program (NCHRP) Project 1-37A, is the latest development in the concept and theories for the analysis and design of new pavements and of overlays for the existing pavements. While MEPDG is waiting for its full-scale implementation and to replace the traditional pavement design methods, it is desirable to make use of the performance prediction capacity of the MEPDG for accurate life-cycle costing analysis. The objective of this study is to review the state of the art and state of the practices for LCC and the new MEPDG methodology for flexible pavement design/preservation, and explore a framework for the integration of LCC into the new MEPDG, which would help the pavement agencies to evaluate the most economic (cost-effective) flexible pavement design for a new roadway section and overlay design for an existing flexible pavement as well as the preservation (maintenance and rehabilitation) time/strategy based on MEPDG methodology.

2021 ◽  
Author(s):  
Omar M. Sharif

The Mechanistic-Empirical Pavement Design Guide (MEPDG), developed by the American Association of State Highway and Transportation Officials (AASHTO) under the directive of the U.S. National Cooperative Highway Research Program (NCHRP) Project 1-37A, is the latest development in the concept and theories for the analysis and design of new pavements and of overlays for the existing pavements. While MEPDG is waiting for its full-scale implementation and to replace the traditional pavement design methods, it is desirable to make use of the performance prediction capacity of the MEPDG for accurate life-cycle costing analysis. The objective of this study is to review the state of the art and state of the practices for LCC and the new MEPDG methodology for flexible pavement design/preservation, and explore a framework for the integration of LCC into the new MEPDG, which would help the pavement agencies to evaluate the most economic (cost-effective) flexible pavement design for a new roadway section and overlay design for an existing flexible pavement as well as the preservation (maintenance and rehabilitation) time/strategy based on MEPDG methodology.


2018 ◽  
Vol 64 (No. 5) ◽  
pp. 216-223 ◽  
Author(s):  
Hejazian Mohammad ◽  
Lotfalian Majid ◽  
Limaei Soleiman Mohammadi

This study was conducted in order to estimate the economic life of two models of rubber-tired skidders, namely Timberjack 450C and HSM 904, in Iranian Caspian forests. The total annual costs and average cumulative cost of skidders were calculated by life-cycle costing analysis. The economic life of the machines was estimated by both the cumulative cost model and cost minimization model. The results indicated that the economic life of Timberjack 450C and HSM 904 is 7,700 h (at the end of the 11<sup>th</sup> year) and 15,300 h (at the end of the 17<sup>th</sup> year), respectively, using the cost minimization model. Furthermore, the results indicated that the economic life of Timberjack 450C and HSM 904 is 9,100 h (at the end of the 13<sup>th</sup> year) and 11,900 h (at the end of the 21<sup>st</sup> year), respectively, using the cumulative cost model. The cumulative cost model estimated the economic life of skidders longer than the cost minimization model.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3783 ◽  
Author(s):  
Martin Khzouz ◽  
Evangelos Gkanas ◽  
Jia Shao ◽  
Farooq Sher ◽  
Dmytro Beherskyi ◽  
...  

This work investigates life cycle costing analysis as a tool to estimate the cost of hydrogen to be used as fuel for Hydrogen Fuel Cell vehicles (HFCVs). The method of life cycle costing and economic data are considered to estimate the cost of hydrogen for centralised and decentralised production processes. In the current study, two major hydrogen production methods are considered, methane reforming and water electrolysis. The costing frameworks are defined for hydrogen production, transportation and final application. The results show that hydrogen production via centralised methane reforming is financially viable for future transport applications. The ownership cost of HFCVs shows the highest cost among other costs of life cycle analysis.


2012 ◽  
Vol 39 (7) ◽  
pp. 812-823
Author(s):  
Leonnie Kavanagh ◽  
Ahmed Shalaby

A damage analysis was conducted on a spring weight restricted flexible pavement to quantify the effects of reduced tire pressure on pavement life and to compare the damage predictions from the Asphalt Institute (AI) and the Mechanistic Empirical Pavement Design Guide (MEPDG) models. The models were used to predict the number of repetitions to fatigue and rutting failure at three maximum loads and at high and low tire pressures. Based on the results, the AI and MEPDG predictions were statistically different for both fatigue cracking and rutting damage, based on the t-test at 95% confidence limits. The AI model predicted 31% lower fatigue damage than the MEPDG, but 56% higher rutting damage. However, both models produced similar trends in predicting the relative effects of reduced tire pressure and load levels on pavement life. The methodology and results of the analysis are presented in this paper.


Author(s):  
Rahma Ibrahim Ibrahim ◽  
Mostafa Hossam ElDin Ali ◽  
Omar Sameh El Marakby ◽  
Noura Mohamed Soussa ◽  
Yomna Mohamed Abdel Aziz ◽  
...  

The Mechanistic-Empirical principles were used to develop a software, known as AASHTOWare Pavement ME Design. It is a design and analysis software, designed according to the latest AASHTO standards, the Mechanistic Empirical Pavement Design Guide MEPDG approach, which identifies the causes of stresses in pavement structures and forecasts the pavement’s performance throughout its lifespan. Due to its sophisticated complex design, the AASHTOware is of constrained availability in the market. However, due to its significance and its ability to revolutionize the industry, this paper discusses a proposed flexible pavement design tables based on the MEPDG that is founded on Egyptian traffic loadings and material characteristics. This study is divided into two phases; the first is concerned with evaluating the performance of an actual Egyptian roadway pavement design while the second aims to develop a new design tool integrating traffic, climate, and material. The research results showed the poor expected performance of the studied roadway pavement in terms of rutting and fatigue cracking. This research also provided a basic flexible pavement design tables using the MEPDG approach and based on the Egyptian materials, climatic and loading conditions.


Author(s):  
Marshall R. Thompson

Activities associated with the development of the revised AASHTO Guide for the Design of Pavement Structures (1986 edition) prompted the AASHTO Joint Task Force on Pavements (JTFOP) recommendation to immediately initiate research with the objective of developing mechanistic pavement analysis and design procedures suitable for use in future versions of the AASHTO guide. The mechanistic-empirical (M-E) principles and concepts stated in the AASHTO guide were included in the NCHRP 1-26 (Calibrated Mechanistic Structural Analysis Procedures for Pavements) project statement. It was not the purpose of NCHRP Project 1-26 to devote significant effort to develop new technology but to assess, evaluate, and apply available M-E technology. Thus, the proposed processes and procedures were based on the best demonstrated available technology. NCHRP Project 1-26 has been completed and the comprehensive reports are available. M-E flexible pavement design is a reality. Some state highway agencies (Kentucky and Illinois) have already established M-E design procedures for new pavements. M-E flexible pavement design procedures have also been developed by industry groups (Shell, Asphalt Institute, and Mobil). The AASHTO JTFOP continues to support and promote the development of M-E procedures for pavement thickness design and is facilitating movement toward an M-E procedure. The successful and wide-scale implementation of M-E pavement design procedures will require cooperating and interacting with various agencies and groups (state highway agencies, AASHTO—particularly the AASHTO JTFOP, FHWA—particularly the Pavement Division and Office of Engineering, and many material and paving association industry groups). It is not an easy process, but it is an achievable goal.


Sign in / Sign up

Export Citation Format

Share Document