scholarly journals A hydroxyapatite phantom material for the calibration of in vivo x-ray fluorescence systems of bone strontium and lead quantification

Author(s):  
Eric Da Silva

A hydroxyaptite [HAp; Ca5(PO4)3OH] phantom material was developed with the goal of improving the calibration protocol of the 125I-induced in vivo X-ray fluorescence (IVXRF) system of bone strontium quantification with further application to other IVXRF bone metal quantification systems, particulary those associated with bone lead quantification. It was found that calcium can be prepared pure of inherent contamination from strontium (and other elements) through a hydroxide precipitation producing pure Ca(OH)2, thereby, allowing for the production of a blank phantom which has not been available previously. The pure Ca(OH)2 can then be used for the preparation of pure CaHPO4 ⋅ 2H2O. A solid state pure HAp phantom can then be prepared by reaction of Ca(OH)2 and CaHPO4 ⋅ 2H2O mixed as to produce a Ca/P mole ratio of 1.67, that in HAp and the mineral phase of bone, in the presence of a setting solution prepared as to raise the total phosphate concentration of the solution by increasing the solubility CaHPO4 ⋅ 2H2O and thereby precipitating HAp. The procedure can only be used to prepare phantoms in which doping with the analyte does not disturb the Ca/P ratio substantially. In cases in which phantoms are to be prepared with high concentrations of strontium, the cement mixture can be modified as to introduce strontium in the form of Sr(OH)2 ⋅ 8H2O as to maintain a (Ca + Sr)/P ratio of 1.67. It was found by both X-ray diffraction spectrometry and Raman spectroscopy studies that strontium substitutes for calcium as in bone when preparing phantoms by this route. The necessity for the blank bone phantoms was assessed through the first blank bone phantom measurement and Monte Carlo simulations. It was found that for the 125I-induced IVXRF system of bone strontium quantification, the source, 125I brachytherapy seeds may be contributing coherently and incoherently scattered zirconium X-rays to the measured spectra, thereby requiring the use of the blank bone phantom as a means of improving the overall quantification methodology. Monte Carlo simulations were employed to evaluate any improvement by the introduction of HAp phantoms into the coherent normalization-based calibration procedure. It was found that HAp phantoms remove the need for a coherent conversion factor (CCF) thereby potentially increasing accuracy of the quantification. Further, it was found that in order for soft tissue attenuation corrections to be possible using spectroscopic information alone, HAp along with a suitable soft tissue surrogate material need to be employed. The HAp phantom material was used for the evaluations of portable X-ray analyzer systems for their potential for IVXRF quantification of lead and strontium with a focus on a comparison between tungsten, silver and rhodium target systems. Silver and rhodium target X-ray tube systems were found to be comparable for this quantification.

2021 ◽  
Author(s):  
Eric Da Silva

A hydroxyaptite [HAp; Ca5(PO4)3OH] phantom material was developed with the goal of improving the calibration protocol of the 125I-induced in vivo X-ray fluorescence (IVXRF) system of bone strontium quantification with further application to other IVXRF bone metal quantification systems, particulary those associated with bone lead quantification. It was found that calcium can be prepared pure of inherent contamination from strontium (and other elements) through a hydroxide precipitation producing pure Ca(OH)2, thereby, allowing for the production of a blank phantom which has not been available previously. The pure Ca(OH)2 can then be used for the preparation of pure CaHPO4 ⋅ 2H2O. A solid state pure HAp phantom can then be prepared by reaction of Ca(OH)2 and CaHPO4 ⋅ 2H2O mixed as to produce a Ca/P mole ratio of 1.67, that in HAp and the mineral phase of bone, in the presence of a setting solution prepared as to raise the total phosphate concentration of the solution by increasing the solubility CaHPO4 ⋅ 2H2O and thereby precipitating HAp. The procedure can only be used to prepare phantoms in which doping with the analyte does not disturb the Ca/P ratio substantially. In cases in which phantoms are to be prepared with high concentrations of strontium, the cement mixture can be modified as to introduce strontium in the form of Sr(OH)2 ⋅ 8H2O as to maintain a (Ca + Sr)/P ratio of 1.67. It was found by both X-ray diffraction spectrometry and Raman spectroscopy studies that strontium substitutes for calcium as in bone when preparing phantoms by this route. The necessity for the blank bone phantoms was assessed through the first blank bone phantom measurement and Monte Carlo simulations. It was found that for the 125I-induced IVXRF system of bone strontium quantification, the source, 125I brachytherapy seeds may be contributing coherently and incoherently scattered zirconium X-rays to the measured spectra, thereby requiring the use of the blank bone phantom as a means of improving the overall quantification methodology. Monte Carlo simulations were employed to evaluate any improvement by the introduction of HAp phantoms into the coherent normalization-based calibration procedure. It was found that HAp phantoms remove the need for a coherent conversion factor (CCF) thereby potentially increasing accuracy of the quantification. Further, it was found that in order for soft tissue attenuation corrections to be possible using spectroscopic information alone, HAp along with a suitable soft tissue surrogate material need to be employed. The HAp phantom material was used for the evaluations of portable X-ray analyzer systems for their potential for IVXRF quantification of lead and strontium with a focus on a comparison between tungsten, silver and rhodium target systems. Silver and rhodium target X-ray tube systems were found to be comparable for this quantification.


2010 ◽  
Vol 25 (2) ◽  
pp. 165-168
Author(s):  
B. Chyba ◽  
M. Mantler ◽  
M. Reiter

This paper presents Monte Carlo simulations considering all stages of the creation process of two-dimensional projections in a computed tomography (CT) device: excitation of angle dependent X-ray spectra within the X-ray tube using results from a previous study [Chyba et al. (2008). Powder Diffr. 23, 150–153]; interaction of these X-rays and secondary photoelectrons with a simple inhomogeneous sample; and interaction of X-rays and photoelectrons with the components (thin layers) of a matrix scintillation detector. The simulations were carried out by using custom software running on up to 50 nodes of a computer cluster. Comparative calculations were also made by using the software package MCNP [Booth et al. (2003). MCNP—A general Monte Carlo N-particle transport code, Report LAUR 03-1987, Los Alamos National Laboratory, Los Alamos, NM]. Tube spectra were calculated with algorithms proposed by Ebel [(2006). Adv. X-Ray Anal. 49, 267–273]. Measurements for the chosen setup made with an available CT device were in relatively good agreement with calculated results. It was shown that good knowledge of the tube spectra is of importance, but most differences between resulting projections and measurements are caused by uncertainties concerning detector response due to light yield of the scintillator and to internal scattering effects within the thin detector layers which lead to spreading of a detected point signal within the detector matrix into neighboring matrix elements.


1993 ◽  
Vol 306 ◽  
Author(s):  
L. E. Ocola ◽  
F. Cerrina

AbstractThe study of photoelectron effects in X-ray Lithography motivates the need for modeling codes to simulate these effects to have an estimate of the influence of x-ray generated photoelectrons in the exposure of resists. We have performed a series of Monte Carlo simulations to study the spatial distribution of photoelectrons in a resist, PMMA, and parametrized this distribution with a set of energy-dependent gaussians for monochromatic X-rays within an energy range of 0.5 KeV to 2.5 KeV. We discuss the effects of the the redistribution of the photoelectron kinetic energy as a function of the electrons generated by the x-ray absorption in various atomic species.


2019 ◽  
Vol 25 (1) ◽  
pp. 92-104 ◽  
Author(s):  
Yu Yuan ◽  
Hendrix Demers ◽  
Samantha Rudinsky ◽  
Raynald Gauvin

AbstractSecondary fluorescence effects are important sources of characteristic X-ray emissions, especially for materials with complicated geometries. Currently, three approaches are used to calculate fluorescence X-ray intensities. One is using Monte Carlo simulations, which are accurate but have drawbacks such as long computation times. The second one is to use analytical models, which are computationally efficient, but limited to specific geometries. The last approach is a hybrid model, which combines Monte Carlo simulations and analytical calculations. In this article, a program is developed by combining Monte Carlo simulations for X-ray depth distributions and an analytical model to calculate the secondary fluorescence. The X-ray depth distribution curves of both the characteristic and bremsstrahlung X-rays obtained from Monte Carlo program MC X-ray allow us to quickly calculate the total fluorescence X-ray intensities. The fluorescence correction program can be applied to both bulk and multilayer materials. Examples for both cases are shown. Simulated results of our program are compared with both experimental data from the literature and simulation data from PENEPMA and DTSA-II. The practical application of the hybrid model is presented by comparing with the complete Monte Carlo program.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4554
Author(s):  
Ralph-Alexandru Erdelyi ◽  
Virgil-Florin Duma ◽  
Cosmin Sinescu ◽  
George Mihai Dobre ◽  
Adrian Bradu ◽  
...  

The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1913
Author(s):  
Sergio Augusto Barcellos Lins ◽  
Marta Manso ◽  
Pedro Augusto Barcellos Lins ◽  
Antonio Brunetti ◽  
Armida Sodo ◽  
...  

A modular X-ray scanning system was developed, to fill in the gap between portable instruments (with a limited analytical area) and mobile instruments (with large analytical areas, and sometimes bulky and difficult to transport). The scanner has been compared to a commercial tabletop instrument, by analysing a Portuguese tile (azulejo) from the 17th century. Complementary techniques were used to achieve a throughout characterisation of the sample in a complete non-destructive approach. The complexity of the acquired X-ray fluorescence (XRF) spectra, due to inherent sample stratigraphy, has been resolved using Monte Carlo simulations, and Raman spectroscopy, as the most suitable technique to complement the analysis of azulejos colours, yielding satisfactory results. The colouring agents were identified as cobalt blue and a Zn-modified Naples-yellow. The stratigraphy of the area under study was partially modelled with Monte Carlo simulations. The scanners performance has been compared by evaluating the images outputs and the global spectrum.


1943 ◽  
Vol 78 (4) ◽  
pp. 285-304 ◽  
Author(s):  
William F. Friedewald ◽  
Rubert S. Anderson

The virus-induced papillomas of cottontail as well as domestic rabbits regress completely within a few weeks when exposed to 5,000 r of x-ray irradiation. The x-rays do not immediately kill the papilloma cells, but lead to death by inhibiting cellular division and producing pathological changes in the cells which then continue to differentiate. The virus associated with the growths, however, not only persists in undiminished amount during regression, but often an increased yield of it can be obtained on extraction. The fibroma virus in crude extracts or in vivo is inactivated by far less irradiation than the papilloma virus. 10,000 r destroys 90 per cent or more of the infectivity of the fibroma virus, whereas at least 100,000 r is required to inactivate 50 per cent of the papilloma virus in extracts containing about the same amount of protein. No variant of the papilloma virus or fibroma virus has been encountered as a result of the irradiation.


Sign in / Sign up

Export Citation Format

Share Document