scholarly journals Battery state of charge estimation and online wheel slip ratio control for autonomous wheeled mobile robot

2021 ◽  
Author(s):  
Maral Partovibakhsh

For autonomous mobile robots moving in unknown environment, accurate estimation of available power along with the robot power demand for each mission is paramount to successful completion of that mission. Regarding the power consumption, the control unit deals with two tasks simultaneously: 1) it has to monitor the power supply (batteries) state of charge (SoC) constantly. This leads to estimation of robot current available power. Besides, batteries are sensitive to deep discharge or overcharge. The battery SoC is an essential factor in power management of a mobile robot. Accurate estimation of the battery SoC can improve power management, optimize the performance, extend the lifetime, and prevent permanent damage to the batteries. 2) The dynamic characteristics of the terrain the robot traverse requires rapid online modifications in its behaviour. The power required for driving a wheel is an increasing function of its slip ratio. For a wheeled robot moving for driving a wheel is an increasing function of its slip ratio. For a wheeled robot moving on different terrains, slip of the wheels should be checked and compensated for to keep the robot moving with less power consumption. To reduce the power consumption, the target robot moving with less power consumption. To reduce the power consumption, the target of the control system is to keep the slip ratio of the driving wheels around the desired value of the control system is to keep the slip ratio of the driving wheels around the desired value. To fulfill the above mentioned tasks, in this thesis, to increase model validity of lithium-ion battery in various charge/discharge scenarios during the mobile robot operation, the battery capacity fade and internal resistance change are modeled by adding them as state variables to a state space model. Using the output measured data, adaptive unscented Kalman Filter (AUKF) is employed for online model parameters identification of the equivalent circuit model at each sampling time. Subsequently, based on the updated model parameters, SoC estimation is conducted using AUKF. The effectiveness of the proposed method is verified through experiments under different power duties in the lab environment through experiments under different power duties in the lab environment. Better results are obtained both in battery model parameters estimation and the battery SoC estimation in comparison with other Kalman filter extensions. Furthermore, for effective control of the slip ratio, a model-based approach to estimating the longitudinal velocity of the mobile robot is presented. The AUKF is developed to estimate the vehicle longitudinal velocity and the wheel angular velocity using measurements from wheel encoders. Based on the estimated slip ratio, a sliding mode controller is designed for slip control of the uncertain nonlinear dynamical system in the presence of model uncertainties, parameter variations, and disturbances. Experiments are carried out in real time on a four-wheel mobile robot to verify the effectiveness of the estimation algorithm and the controller. It is shown that the controller is able to control the slip ratio of the mobile robot on different terrains while adaptive concept of AUKF leads to better results than the unscented Kalman filter in estimating the vehicle velocity which is difficult to measure in actual practice.

2021 ◽  
Author(s):  
Maral Partovibakhsh

For autonomous mobile robots moving in unknown environment, accurate estimation of available power along with the robot power demand for each mission is paramount to successful completion of that mission. Regarding the power consumption, the control unit deals with two tasks simultaneously: 1) it has to monitor the power supply (batteries) state of charge (SoC) constantly. This leads to estimation of robot current available power. Besides, batteries are sensitive to deep discharge or overcharge. The battery SoC is an essential factor in power management of a mobile robot. Accurate estimation of the battery SoC can improve power management, optimize the performance, extend the lifetime, and prevent permanent damage to the batteries. 2) The dynamic characteristics of the terrain the robot traverse requires rapid online modifications in its behaviour. The power required for driving a wheel is an increasing function of its slip ratio. For a wheeled robot moving for driving a wheel is an increasing function of its slip ratio. For a wheeled robot moving on different terrains, slip of the wheels should be checked and compensated for to keep the robot moving with less power consumption. To reduce the power consumption, the target robot moving with less power consumption. To reduce the power consumption, the target of the control system is to keep the slip ratio of the driving wheels around the desired value of the control system is to keep the slip ratio of the driving wheels around the desired value. To fulfill the above mentioned tasks, in this thesis, to increase model validity of lithium-ion battery in various charge/discharge scenarios during the mobile robot operation, the battery capacity fade and internal resistance change are modeled by adding them as state variables to a state space model. Using the output measured data, adaptive unscented Kalman Filter (AUKF) is employed for online model parameters identification of the equivalent circuit model at each sampling time. Subsequently, based on the updated model parameters, SoC estimation is conducted using AUKF. The effectiveness of the proposed method is verified through experiments under different power duties in the lab environment through experiments under different power duties in the lab environment. Better results are obtained both in battery model parameters estimation and the battery SoC estimation in comparison with other Kalman filter extensions. Furthermore, for effective control of the slip ratio, a model-based approach to estimating the longitudinal velocity of the mobile robot is presented. The AUKF is developed to estimate the vehicle longitudinal velocity and the wheel angular velocity using measurements from wheel encoders. Based on the estimated slip ratio, a sliding mode controller is designed for slip control of the uncertain nonlinear dynamical system in the presence of model uncertainties, parameter variations, and disturbances. Experiments are carried out in real time on a four-wheel mobile robot to verify the effectiveness of the estimation algorithm and the controller. It is shown that the controller is able to control the slip ratio of the mobile robot on different terrains while adaptive concept of AUKF leads to better results than the unscented Kalman filter in estimating the vehicle velocity which is difficult to measure in actual practice.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenxian Duan ◽  
Chuanxue Song ◽  
Yuan Chen ◽  
Feng Xiao ◽  
Silun Peng ◽  
...  

An accurate state of charge (SOC) can provide effective judgment for the BMS, which is conducive for prolonging battery life and protecting the working state of the entire battery pack. In this study, the first-order RC battery model is used as the research object and two parameter identification methods based on the least square method (RLS) are analyzed and discussed in detail. The simulation results show that the model parameters identified under the Federal Urban Driving Schedule (HPPC) condition are not suitable for the Federal Urban Driving Schedule (FUDS) condition. The parameters of the model are not universal through the HPPC condition. A multitimescale prediction model is also proposed to estimate the SOC of the battery. That is, the extended Kalman filter (EKF) is adopted to update the model parameters and the adaptive unscented Kalman filter (AUKF) is used to predict the battery SOC. The experimental results at different temperatures show that the EKF-AUKF method is superior to other methods. The algorithm is simulated and verified under different initial SOC errors. In the whole FUDS operating condition, the RSME of the SOC is within 1%, and that of the voltage is within 0.01 V. It indicates that the proposed algorithm can obtain accurate estimation results and has strong robustness. Moreover, the simulation results after adding noise errors to the current and voltage values reveal that the algorithm can eliminate the sensor accuracy effect to a certain extent.


Author(s):  
Kaifeng Huang ◽  
Juqiang Feng ◽  
Zegong Liu ◽  
Long Wu ◽  
Xing Zhang

Power battery SOC (state of charge, SOC) is one of the important decision-making factors of energy management. Accurate estimation plays an important role in optimizing vehicle energy management and improving the utilization of power battery energy. The key to accurate estimation of SOC is to determine circuit model parameters and estimation methods. The research object of this article is lithium manganese oxide battery for mining (LiMn2O4). The experiments of multiplying power, temperature and HPPC (hybrid pulse power characteristic, HPPC) are carried out. A self-tuning calculation method of dynamic system is proposed, and the dynamic self-tuning model based on second-order RC is established. At the same time, in view of the shortcoming that the UKF (Unscented Kalman Filter, UKF) algorithm cannot estimate the noise in real time, In order to improve the accuracy of battery SOC estimation, an adaptive square root unscented Kalman filter (ASR-UKF) algorithm is proposed, which can make the noise statistical characteristics follow the estimation results for adaptive adjustment. Finally, the constant current and dynamic conditions are tested. The results show that the maximum change rate of model parameters with magnification is 76%, and the maximum change rate with temperature is 73.7%. The analysis of dynamic characteristics is a key factor to improve the accuracy of SOC estimation; ASR-UKF Compared with the UKF algorithm, the error is reduced by 78% under constant current conditions and 85.7% under dynamic conditions. The reliability and real-time performance of the algorithm can be obtained by comparing the simulation data with the actual data. The conclusions of this paper can be used as a theoretical basis, which can be used for model analysis of lithium batteries for mining and estimation of internal state variables.


2019 ◽  
Vol 9 (19) ◽  
pp. 4177
Author(s):  
Xiangwei Guo ◽  
Xiaozhuo Xu ◽  
Jiahao Geng ◽  
Xian Hua ◽  
Yan Gao ◽  
...  

State of charge (SOC) estimation is generally acknowledged to be one of the most important functions of the battery management system (BMS) and is thus widely studied in academia and industry. Based on an accurate SOC estimation, the BMS can optimize energy efficiency and protect the battery from being over-charged or over-discharged. The accurate online estimation of the SOC is studied in this paper. First, it is proved that the second-order resistance capacitance (RC) model is the most suitable equivalent circuit model compared with the Thevenin and multi-order models. The second-order RC equivalent circuit model is established, and the model parameters are identified. Second, the reasonable optimization of model parameters is studied, and a reasonable optimization method is proposed to improve the accuracy of SOC estimation. Finally, the SOC is estimated online based on the adaptive unscented Kalman filter (AUKF) with optimized model parameters, and the results are compared with the results of an estimation based on pre-optimization model parameters. Simulation experiments show that, without affecting the convergence of the initial error of the AUKF, the model after parameter optimization has a higher online SOC estimation accuracy.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4536 ◽  
Author(s):  
Thanh-Tung Nguyen ◽  
Abdul Basit Khan ◽  
Younghwi Ko ◽  
Woojin Choi

An accurate state of charge (SOC) estimation of the battery is one of the most important techniques in battery-based power systems, such as electric vehicles (EVs) and energy storage systems (ESSs). The Kalman filter is a preferred algorithm in estimating the SOC of the battery due to the capability of including the time-varying coefficients in the model and its superior performance in the SOC estimation. However, since its performance highly depends on the measurement noise (MN) and process noise (PN) values, it is difficult to obtain highly accurate estimation results with the battery having a flat plateau OCV (open-circuit voltage) area in the SOC-OCV curve, such as the Lithium iron phosphate battery. In this paper, a new integrated estimation method is proposed by combining an unscented Kalman filter and a particle filter (UKF-PF) to estimate the SOC of the Lithium iron phosphate battery. The equivalent circuit of the battery used is composed of a series resistor and two R-C parallel circuits. Then, it is modeled by a second-order autoregressive exogenous (ARX) model, and the parameters are identified by using the recursive least square (RLS) identification method. The validity of the proposed algorithm is verified by comparing the experimental results obtained with the proposed method and the conventional methods.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1054
Author(s):  
Kuo Yang ◽  
Yugui Tang ◽  
Zhen Zhang

With the development of new energy vehicle technology, battery management systems used to monitor the state of the battery have been widely researched. The accuracy of the battery status assessment to a great extent depends on the accuracy of the battery model parameters. This paper proposes an improved method for parameter identification and state-of-charge (SOC) estimation for lithium-ion batteries. Using a two-order equivalent circuit model, the battery model is divided into two parts based on fast dynamics and slow dynamics. The recursive least squares method is used to identify parameters of the battery, and then the SOC and the open-circuit voltage of the model is estimated with the extended Kalman filter. The two-module voltages are calculated using estimated open circuit voltage and initial parameters, and model parameters are constantly updated during iteration. The proposed method can be used to estimate the parameters and the SOC in real time, which does not need to know the state of SOC and the value of open circuit voltage in advance. The method is tested using data from dynamic stress tests, the root means squared error of the accuracy of the prediction model is about 0.01 V, and the average SOC estimation error is 0.0139. Results indicate that the method has higher accuracy in offline parameter identification and online state estimation than traditional recursive least squares methods.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1733
Author(s):  
Hao Wang ◽  
Yanping Zheng ◽  
Yang Yu

In order to improve the estimation accuracy of the battery state of charge (SOC) based on the equivalent circuit model, a lithium-ion battery SOC estimation method based on adaptive forgetting factor least squares and unscented Kalman filtering is proposed. The Thevenin equivalent circuit model of the battery is established. Through the simulated annealing optimization algorithm, the forgetting factor is adaptively changed in real-time according to the model demand, and the SOC estimation is realized by combining the least-squares online identification of the adaptive forgetting factor and the unscented Kalman filter. The results show that the terminal voltage error identified by the adaptive forgetting factor least-squares online identification is extremely small; that is, the model parameter identification accuracy is high, and the joint algorithm with the unscented Kalman filter can also achieve a high-precision estimation of SOC.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 122
Author(s):  
Peipei Xu ◽  
Junqiu Li ◽  
Chao Sun ◽  
Guodong Yang ◽  
Fengchun Sun

The accurate estimation of a lithium-ion battery’s state of charge (SOC) plays an important role in the operational safety and driving mileage improvement of electrical vehicles (EVs). The Adaptive Extended Kalman filter (AEKF) estimator is commonly used to estimate SOC; however, this method relies on the precise estimation of the battery’s model parameters and capacity. Furthermore, the actual capacity and battery parameters change in real time with the aging of the batteries. Therefore, to eliminate the influence of above-mentioned factors on SOC estimation, the main contributions of this paper are as follows: (1) the equivalent circuit model (ECM) is presented, and the parameter identification of ECM is performed by using the forgetting-factor recursive-least-squares (FFRLS) method; (2) the sensitivity of battery SOC estimation to capacity degradation is analyzed to prove the importance of considering capacity degradation in SOC estimation; and (3) the capacity degradation model is proposed to perform the battery capacity prediction online. Furthermore, an online adaptive SOC estimator based on capacity degradation is proposed to improve the robustness of the AEKF algorithm. Experimental results show that the maximum error of SOC estimation is less than 1.3%.


Sign in / Sign up

Export Citation Format

Share Document