scholarly journals Multifunctionality of product systems – a general insight from the circular economy’s perspective

2019 ◽  
pp. 76-84
Author(s):  
Anna Lewandowska

One of the key and simultaneously the most difficult issues within the methodology of the environmental life cycle assessment (as well as related life cycle-based techniques) is solving the problem of the multifunctionality of product systems, which includes the questions crucial for the circular economy: reuse, recycling, transforming by-products into valuable (in the market aspect) co-products, prolonging durability. The present paper aims at familiarizing the questions of multifunctionality and presenting the Circular Footprint Formula (CFF), which has been developed within the pilot stage of the European Commission project related to the common methods of measurement and communication the life cycle environmental performance of products and organisations. An example of PET bottles has been presented and two scenarios have been analysed: (1) a scenario with no recycling (a recycling content = 0 and a recycling rate = 0) and (2) a scenario with recycling (recycling content = 0.24 and recycling rate = 0.24). Calculations of life cycle emissions of CO2 have been made by using the CFF formula. An idea of division environmental burdens and credits between supplier and user of the recycled material has been shown and explained as well.

Detritus ◽  
2021 ◽  
pp. 94-105
Author(s):  
Fabian Gievers ◽  
Achim Loewen ◽  
Michael Nelles

The pyrolysis of sewage sludge is an alternative method to recycle the contained nutrients, such as phosphorus, by material use of the resulting biochar. However, the ecological effects of pyrolysis are not easy to evaluate. Therefore, a life cycle assessment (LCA) was carried out to determine the environmental impact of sewage sludge pyrolysis and to compare it with the common method of sewage sludge incineration. In order to identify the most sustainable applications of the resulting biochar, four different scenarios were analyzed. The modeled life cycles include dewatering, drying and pyrolysis of digested sewage sludge and utilization paths of the by-products as well as various applications of the produced biochar and associated transports. The life cycle impact assessment was carried out using the ReCiPe midpoint method. The best scenario in terms of global warming potential (GWP) was the use of biochar in horticulture with net emissions of 2 g CO2 eq./kg sewage sludge. This scenario of biochar utilization can achieve savings of 78% of CO2 eq. emissions compared to the benchmark process of sewage sludge mono-incineration. In addition, no ecological hotspots in critical categories such as eutrophication or ecotoxicity were identified for the material use of biochar compared to the benchmark. Pyrolysis of digested sewage sludge with appropriate biochar utilization can therefore be an environmentally friendly option for both sequestering carbon and closing the nutrient cycle.


Author(s):  
Linda Hagman ◽  
Roozbeh Feiz

Abstract The transition toward a circular and biobased economy requires the biorefineries and bio-based industries to become more resource efficient with regards to their waste and by-product management. Organic by-products and waste streams can be an important source of value if used in feasible pathways that not only have a low environmental impact but also preserve or recover their energy, nutrients, and other potentially valuable components. Through development of a multi-criteria assessment framework and its application on a real case, this article provides methodological and practical insights on decision making for enhanced by-product management. Our framework includes 8 key areas and 18 well-defined indicators for assessing the environmental performance, feasibility, and long-term risk of each alternative. We studied six different management options for the stillage by-product of a Swedish wheat-based biorefinery and our results shows that the most suitable options for this biorefinery are to use the stillage either as animal fodder or as feedstock for local biogas production for vehicle fuel. This multi-criteria approach can be used by bio-based industrial actors to systematically investigate options for by-product management and valorisation for a circular and bio-based economy. Graphic Abstract


2002 ◽  
Vol 46 (9) ◽  
pp. 29-36 ◽  
Author(s):  
E. Friedrich

The environmental life cycle assessment (LCA) methodology was used in this study to calculate and compare the environmental burdens resulting from two different methods employed in the production of potable water in South Africa. One method employs conventional processes for the treatment of water and the other one is based on membrane filtration. All inputs (raw materials and energy) and outputs (products, by-products and emissions to air, water and soil) from the two methods were listed and quantified. These inputs and outputs cause different environmental impacts (global warming, ozone depletion, smog formation, acidification, nutrient enrichment, ecotoxicity and human toxicity) and the contribution of each method to each of these impact categories has been quantified, resulting in a score. The ISO (International Organisation for Standardisation) methodological framework for life cycle assessments guided this study. By using these methodologies and by tracing all the processes involved in the production of potable water to the interface with the environment, it was found that the main contributor to the overall environmental burden is the generation of electricity. This conclusion is valid for both methods investigated and in order to increase the environmental performance in the production of potable water the energy efficiency of waterworks should be increased.


2021 ◽  
Vol 52 (2) ◽  
Author(s):  
Andrea Casson ◽  
Valentina Giovenzana ◽  
Alessio Tugnolo ◽  
Alessia Pampuri ◽  
Ilaria Fiorindo ◽  
...  

The European catering sector is hugely expanding and serves over 6 billion meals every year, which translate in 65 million meals per day. The aim of our study was to investigate the environmental performance of the expanded-polypropylene (EPP) box production process to improve sustainability in catering services. Moreover, a quantification of the environmental benefit in using the EPP box instead of the conventional packaging was performed. The life cycle assessment was conducted following the ISO 14044:2006 standard. The EPP box for food delivery makes it possible to design a catering service characterised by –37% of overall impacts compared to the use of the common box. EPP represents a useful solution for environmentally sustainable catering services due to its mechanical response and the insulating properties of the polymer foam. The environmental impact of the EPP box life cycle can be further reduced (–29%) by changing the energy country mix and applying a circular economy model, thus recycling the 100% of the EPP box. In conclusion, the EPP box represents a useful solution for an environmentally sustainable catering service.


2020 ◽  
Vol 202 ◽  
pp. 01003
Author(s):  
Shabbir H. Gheewala

The current model of a linear economy with end-of-pipe waste treatment is not sustainable. Cleaner production helps reduce resource use and emissions, but is still not an optimal solution without considering a life cycle perspective. Life cycle-based tools such as life cycle assessment and life cycle costing are useful for identifying optimal environmental and economic options for product systems. SDG 12 dealing with responsible consumption and production is key for sustainability. Developing of a circular economy requires life cycle thinking and life cycle-based tools for assessment. All these issues are discussed along with illustrative examples.


2020 ◽  
Author(s):  
Hongxi Luo ◽  
Fangwei Cheng ◽  
Luke Huelsenbeck ◽  
Natalie Smith

Metal-organic frameworks (MOFs) are a new class of materials that has shown great potential in catalysis, sensing, separations, and carbon capture and storage. Conventionally, MOFs are synthesized at lab-scale using organic solvent-based systems, leading to high environmental burdens and high operating costs, which ultimately hinders the large-scale production and application of MOFs. Aqueous synthesis of MOFs overcomes such difficulty by eliminating the organic solvent, which makes it an environmentalfriendlier and economically-favorable alternative to the current production method. However, further quantitative analysis is required to compare the environmental and economic performances of the two methods. Here, we used life cycle assessment (LCA) coupled with techno-economic analysis (TEA) to evaluate the environmental and economic performances of different UiO-66-NH2 production methods. When the solvothermal method was replaced by the aqueous solution-based method, the LCA and TEA results suggest the environmental burdens and cost of UiO-66-NH2 production were reduced by up to 91% and 84%, respectively. By using aqueous solution-based method, the cradle to gate carbon footprint and production cost of UiO-66-NH2 were estimated to be 43 kg CO2 eq/kg and $15.8/kg, respectively. We further applied our LCA results to reassess the role of UiO-66-NH2 in carbon capture and storage (CCS) and compare its environmental performance with current benchmark (amine-based solvent). Our results show that UiO-66-NH2 could potentially have better environmental performance than the amine-based solvent if the number of regeneration cycles is greater than 1513. This work is the first comprehensive LCA-TEA study that quantifies the substantial environmental and economic benefits of using the aqueous solution-based systems to produce UiO-66-NH2, and the analysis in this work is intended to be a starting point for further systematic studies on the full life-cycle impacts of MOFs.


2020 ◽  
Author(s):  
Hongxi Luo ◽  
Fangwei Cheng ◽  
Luke Huelsenbeck ◽  
Natalie Smith

Metal-organic frameworks (MOFs) are a new class of materials that has shown great potential in catalysis, sensing, separations, and carbon capture and storage. Conventionally, MOFs are synthesized at lab-scale using organic solvent-based systems, leading to high environmental burdens and high operating costs, which ultimately hinders the large-scale production and application of MOFs. Aqueous synthesis of MOFs overcomes such difficulty by eliminating the organic solvent, which makes it an environmentalfriendlier and economically-favorable alternative to the current production method. However, further quantitative analysis is required to compare the environmental and economic performances of the two methods. Here, we used life cycle assessment (LCA) coupled with techno-economic analysis (TEA) to evaluate the environmental and economic performances of different UiO-66-NH2 production methods. When the solvothermal method was replaced by the aqueous solution-based method, the LCA and TEA results suggest the environmental burdens and cost of UiO-66-NH2 production were reduced by up to 91% and 84%, respectively. By using aqueous solution-based method, the cradle to gate carbon footprint and production cost of UiO-66-NH2 were estimated to be 43 kg CO2 eq/kg and $15.8/kg, respectively. We further applied our LCA results to reassess the role of UiO-66-NH2 in carbon capture and storage (CCS) and compare its environmental performance with current benchmark (amine-based solvent). Our results show that UiO-66-NH2 could potentially have better environmental performance than the amine-based solvent if the number of regeneration cycles is greater than 1513. This work is the first comprehensive LCA-TEA study that quantifies the substantial environmental and economic benefits of using the aqueous solution-based systems to produce UiO-66-NH2, and the analysis in this work is intended to be a starting point for further systematic studies on the full life-cycle impacts of MOFs.


2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


Sign in / Sign up

Export Citation Format

Share Document