Life-cycle assessment as an environmental management tool in the production of potable water

2002 ◽  
Vol 46 (9) ◽  
pp. 29-36 ◽  
Author(s):  
E. Friedrich

The environmental life cycle assessment (LCA) methodology was used in this study to calculate and compare the environmental burdens resulting from two different methods employed in the production of potable water in South Africa. One method employs conventional processes for the treatment of water and the other one is based on membrane filtration. All inputs (raw materials and energy) and outputs (products, by-products and emissions to air, water and soil) from the two methods were listed and quantified. These inputs and outputs cause different environmental impacts (global warming, ozone depletion, smog formation, acidification, nutrient enrichment, ecotoxicity and human toxicity) and the contribution of each method to each of these impact categories has been quantified, resulting in a score. The ISO (International Organisation for Standardisation) methodological framework for life cycle assessments guided this study. By using these methodologies and by tracing all the processes involved in the production of potable water to the interface with the environment, it was found that the main contributor to the overall environmental burden is the generation of electricity. This conclusion is valid for both methods investigated and in order to increase the environmental performance in the production of potable water the energy efficiency of waterworks should be increased.

2020 ◽  
Vol 9 (3) ◽  
pp. 183-190
Author(s):  
Bahareh Mohsenirad ◽  
◽  
Ebrahim Fataei ◽  

Background: Environmental issues such as global warming and ozone depletion are one of the most controversial concerns of scientists due to their several potential impacts on the earth as a result of long-term emission of greenhouse gases, mainly CH4 and CO2. Evidence of greenhouse gas emissions during rubber production provides important and useful data for Life Cycle Assessment (LCA). The present study aimed to reduce the emission rate of greenhouse gases in the ball bladder production process using natural rubber in combination with recycled rubber. Methods: In this regard, a LCA in SimaPro 8.0.1 software using CML2001 method was conducted on data related to the resources, chemicals, raw materials and energy consumption during ball manufacturing in Tanin Peak Sabalan Factory, Ardabil, Iran. Results: Our findings revealed that the ball bladder with natural rubber had the largest contribution to the ozone layer depletion (39.2%) and global warming (41.1%), while the bladder with both recycled and natural rubbers had an impact of 27.9% and 29.5%, respectively. Conclusion: In conclusion, the ball bladder with both recycled and natural rubbers is less eco-destructive than that the bladder with only natural rubber.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 873
Author(s):  
Francisco Javier Flor-Montalvo ◽  
Agustín Sánchez-Toledo Ledesma ◽  
Eduardo Martínez Cámara ◽  
Emilio Jiménez-Macías ◽  
Jorge Luis García-Alcaraz ◽  
...  

Natural stoppers are a magnificent closure for the production of aging wines and unique wines, whose application is limited by the availability of raw materials and more specifically of cork sheets of different thickness and quality. The growing demand for quality wine bottle closures leads to the search for alternative stopper production. The two-piece stopper is an alternative since it uses non-usable plates in a conventional way for the production of quality caps. The present study has analyzed the impact of the manufacture of these two-piece stoppers using different methodologies and for different dimensions by developing an LCA (Life Cycle Assessment), concluding that the process phases of the plate, its boiling, and its stabilization, are the phases with the greatest impact. Likewise, it is detected that the impacts in all phases are relatively similar (for one kg of net cork produced), although the volumetric difference between these stoppers represents a significant difference in impacts for each unit produced.


2021 ◽  
Vol 326 ◽  
pp. 124711
Author(s):  
Vasiliki Kachrimanidou ◽  
Sofia Maria Ioannidou ◽  
Dimitrios Ladakis ◽  
Harris Papapostolou ◽  
Nikolaos Kopsahelis ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 3436
Author(s):  
Hani A. Abu-Qdais ◽  
Muna A. Abu-Dalo ◽  
Yazan Y. Hajeer

Due to their properties, silver nanoparticles (AgNPs) are widely used in consumer products. The widespread use of these products leads to the release of such nanoparticles into the environment, during manufacturing, use, and disposal stages. Currently there is a high margin of uncertainty about the impacts of nano products on the environment and human health. Therefore, different approaches including life cycle assessment (LCA) are being used to evaluate the environmental and health impacts of these products. In this paper, a comparison between four different AgNP synthesis methods was conducted. In addition, four textile products that contain AgNPs were subjected to comparison using LCA analysis to assess their environmental and public health impacts using SimaPro modeling platform. Study results indicate that using alternative methods (green) to AgNPs synthesis will not necessarily reduce the environmental impacts of the synthesizing process. To the best of our knowledge, this is the first study that has compared and assessed the environmental burdens associated with different nanosilver-based textile products at different disposal scenarios. The synthesis of 1 kg of AgNPs using modified Tollens’ method resulted in 580 kg CO2 eq, while 531 kg CO2 eq resulted from the chemical approach. Furthermore, the manufacturing stage had the highest overall impacts as compared to other processes during the life cycle of the product, while the product utilization and disposal stages had the highest impacts on ecotoxicity. Sensitivity analysis revealed that under the two disposal scenarios of incineration and landfilling, the impacts were sensitive to the amount of AgNPs.


Author(s):  
Bayu Sukmana ◽  
Isti Surjandari ◽  
Muryanto . ◽  
Arief A. R. Setiawan ◽  
Edi Iswanto Wiloso

Firstly global warming issue caused by greenhouse gas emissions (CO2) which comes from human activities. Along with increasing of daily need, that humans of activities food produce is also increase, include of tofu. Tofu is a traditional Indonesian specialty made from soybeans and used as a side dish. The purpose of this study was to determine the impact of global warming from tofu products on Mampang Prapatan's Small Tofu and Medium Enterprises. The method used in this study is the Life Cycle Assessment (LCA) method with the help of Simapro 8.4 software with a 1 kg tofu functional unit. The data collected in this study is the average data of tofu production for 3 months, namely January - March 2018. The LCA data in this study include the process of soybean cultivation, transportation processes for shipping soybeans, water, fuel wood, and electricity use. The limitations of this study are from cradle (soybean cultivation) to gate (tofu products).The results showed that UKM Mampang Prapatan has the potential impact of global warming with a value of 3.84 kg CO2-eq, while the value of global warming in the production process knows the scenario of wastewater treatment and the use of Liquefied Petroleum Gas (LPG) as fuel for boiling pulp 4.49 kg CO2-eq soybeans. Based on the results of this study, greenhouse gas (CO2) emissions are issued; the intervention that can be done is to optimize the use of raw materials for production to reduce the impact of CO2-eq kg global warming.


2020 ◽  
pp. 0734242X2095427
Author(s):  
Maribel Velasco Perez ◽  
Perla Xochitl Sotelo Navarro ◽  
Alethia Vazquez Morillas ◽  
Rosa María Espinosa Valdemar ◽  
Jéssica Paola Hermoso Lopez Araiza

Absorbent hygiene products (AHP) have received much interest due to the notion that their end-of-life (EoL) stage has high environmental impacts. Since the use of AHP will continue to rise in the foreseeable future, information that helps with a reduction in the environmental impacts of AHP through their life cycle is needed. This research presents an estimation of AHP in municipal waste, and it also reviews and discusses waste management options, available treatments at bench, pilot or full scale, and life cycle assessments (LCAs) available in the literature. Municipal waste of countries belonging to the Organization for Economic Co-operation and Development contains on average 2.7% of baby nappies, 4.8% of adult nappies and 0.5% of sanitary pads (in weight), whereas that of Latin-American countries have 7.3%, 3.3%, and 0.9%, respectively. Management options for AHP waste in developed countries are landfilling and incineration, while in developing countries AHP are disposed of in dumpsites and landfills. Most LCAs identify significant environmental impacts in the production of raw materials, while EoL scenarios involving incineration and landfill were found to have a significant contribution to global warming potential. Substitution with alternative products has been suggested as a way of decreasing environmental impacts; however, their use frequently causes a trade-off on different impact categories. Municipalities could use a wide range of policy tools, such as extended producer responsibility systems, bans, levies, ecolabelling, or a combination of these, to reduce the environmental and economic burden of AHP waste.


Sign in / Sign up

Export Citation Format

Share Document