Continuous tannin extraction by use of screw reactor

TAPPI Journal ◽  
2021 ◽  
Vol 20 (2) ◽  
pp. 139-147
Author(s):  
MARKKU KUOSA ◽  
ANTTI HEIKKINEN ◽  
TAPIO TIRRI ◽  
LASSE PULKKINEN

A pilot-size screw reactor (extraction unit) was used for tannin extraction of spruce. Yield of the same magnitude or better was obtained when comparing a screw reactor with batch reactors. A longer presoaking time in water seemed to be better than a short one for obtaining higher yield. A higher yield is obtained with lower dry-water ratio, which suggests that the internal diffusion in bark does not determine mass transfer as much as is the case without presoaking of bark. The higher dry-water ratio decreased the yield. The prior soaking of the bark also minimized the mechanical reactor feeding problems (clogging). The benefits of a screw reactor likely are that run time changes for different process conditions are flexible; it simplifies design and construction of an industrial unit for tannin production; and it saves space because of the need for fewer and smaller intermediate storage tanks.

2017 ◽  
Vol 75 (11) ◽  
pp. 2680-2691 ◽  
Author(s):  
K. J. Murray ◽  
W. J. Parker ◽  
L. M. Bragg ◽  
M. R. Servos

The potential for integrated fixed film activated sludge (IFAS) processes to achieve enhanced transformation of pharmaceuticals relative to conventional activated sludge (CAS) processes was assessed. Previous studies have focused on direct comparisons of parallel reactors with and without fixed film carriers and little information is available on the impacts of how varying operating parameters impact the differences in observed pharmaceutical compound (PC) transformation capabilities between CAS reactors and those equipped with both an activated sludge (AS) and fixed film carriers. The testing was carried out using bench scale sequencing batch reactors fed with authentic municipal wastewater and operated at selected combinations of temperature and solids retention time (SRT). PC transformation efficiencies were assessed in a 22 factorial design that employed the IFAS and CAS processes, operated in parallel under identical process conditions. Nitrification rate testing that was conducted to obtain insight into the biomass activity demonstrated that IFAS consistently had improved nitrification kinetics despite lower mixed liquor volatile suspended solids levels thereby demonstrating the contribution of the biofilm to nitrification. Increased transformation of atenolol (ATEN; ranging from 10–60%) and trimethoprim (TRIM; ranging from 30–50%) in the IFAS equipped reactors relative to their respective activated sludge (AS) controls was observed under all experimental conditions. Negligible transformation of carbamazepine was observed in both reactors under all conditions investigated. More than 99% of acetaminophen was transformed in both configurations under all conditions. There was no correspondence between nitrification activity and TRIM removal in the control AS while conditions that stimulated nitrification in the control AS also resulted in enhanced removal of ATEN. The results of this study indicate that the integration of biofilms in AS processes enhances transformation of some PCs.


2021 ◽  
Vol 6 (3(62)) ◽  
pp. 15-20
Author(s):  
Kateryna Konovalenko ◽  
Yurii Beznosyk ◽  
Liudmyla Bugaieva

The object of research is the reactor for the synthesis of carboxymethyl cellulose. An important indicator of the quality of sodium carboxymethyl cellulose, which determines the field of its application, is the degree of polymerization. However, obtaining a product with a specific parameter under industrial conditions is associated with a number of difficulties. Therefore, important research tasks are the development of a mathematical model of the kinetics of carboxymethyl cellulose synthesis, experimental studies to determine the rate constants of synthesis reactions, modeling of a screw reactor for the synthesis of carboxymethyl cellulose, and computer studies. When studying the kinetics of reactions of carboxymethyl cellulose, one of the possible approaches was to use a quasi-homogeneous model, which is widely used in modeling processes on a catalyst grain. This approach is used to describe and analyze individual stages; however, a number of difficulties arise in heterogeneous reactions of cellulose. In the course of these reactions, the properties of the solid phase change and the processes, respectively, are unsteady in time. The reaction does not take place on the surface of hard particles, but in the entire volume of the fibers. The concentration and reactivity of cellulose hydroxides, water, and products formed during the reaction remain approximately constant; therefore, the use of a quasi-homogeneous model is quite acceptable and does not cause additional mathematical difficulties. As a result of these experiments, according to the obtained integral curves, the method of least squares was used to find the constants. To determine the values of the kinetic constants, an experiment was carried out in an integral isothermal reactor. During the experiments, the degree of substitution of carboxymethyl cellulose and the concentration of free alkali were measured. As a result of numerous implementations of the search task, the values of the constants and activation energies were obtained. This kinetic modeling approach can be used in the synthesis of other cellulose ethers. The rate constant of the synthesis reaction depends on the process conditions. Using the proposed approach to describing the interaction of cellulose with a reagent, the reaction mixture considered as a quasi-homogeneous system can be described using a single-phase flow model.


Author(s):  
Okoro Sylvanus Ezenwa ◽  
Nwabueze Henrietta Ogochukwu

This work focuses on the comparative analysis and regenerative studies of alkaline modified groundnut shell as adsorbent for the removal of oil layer from water surface. The groundnut shell was carbonized at 800°C before chemical activation. Scanning Electron Microscope (SEM) and UV/VIS Spectrophotometer were used in characterizing the adsorbents. Batch adsorption studies were carried out to determine the effect of process conditions on the percentage removal. Regeneration studies was applied to investigate the reusability of the adsorbent after each batch of experiments. SEM characterization revealed that micro porous space on the surface of the adsorbent (groundnut shell) increased significantly after activation. The surface area of the composite increased from 28.5cm2 to 87.9cm2 after activation. pH of point zero charge ranging from  to  revealed negative charge predominance on the surface of the adsorbents and adsorption was found to be very fast at low pH due to strong electrostatic force between oil layer and ion diffusion on the adsorbent surface. The optimum adsorption time was found to be 100 minutes with 79.4% oil removal.at pH of 6.9. Regeneration of the adsorbent after each batch of experiments shows that the surface area remained intact at 77.8cm2 which is almost equal to the modified (unused) adsorbent. Experiments with the regenerated adsorbent shows that 84.89% of oil was removed at oil water ratio of 0.2g/100cm3 against 88.56% of oil removed using the modified adsorbent at the same oil water ratio.  Thus, the sorption process was feasible, spontaneous, rapid and showed high performance with a proven ability of the adsorbent to be regenerated after use. However, the present approach has the advantage of simplicity, less time consuming and most importantly, low cost considering the availability of groundnut shell at no cost.


2008 ◽  
Vol 57 (3) ◽  
pp. 431-438 ◽  
Author(s):  
S. Marsili-Libelli ◽  
A. Spagni ◽  
R. Susini

This paper discusses the application of artificial intelligence (AI) concepts to the monitoring of a lab-scale Sequencing Batch Reactor (SBR) treating nitrogen-rich wastewater (sanitary landfill leachate). The paper describes the implementation of a fuzzy inferential system to identify the correct switching sequence of the process and discusses the results obtained with six months of uninterrupted operation, during which the process conditions varied widely. The monitoring system proved capable of adjusting the process operation, in terms of phase length and external COD addition, to the varying environmental and loading conditions, with a percentage of correct phase recognition in excess of 95%. In addition, the monitoring system could be remotely operated through the internet via TCP/IP protocol.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


2010 ◽  
Vol 19 (3) ◽  
pp. 68-74 ◽  
Author(s):  
Catherine S. Shaker

Current research on feeding outcomes after discharge from the neonatal intensive care unit (NICU) suggests a need to critically look at the early underpinnings of persistent feeding problems in extremely preterm infants. Concepts of dynamic systems theory and sensitive care-giving are used to describe the specialized needs of this fragile population related to the emergence of safe and successful feeding and swallowing. Focusing on the infant as a co-regulatory partner and embracing a framework of an infant-driven, versus volume-driven, feeding approach are highlighted as best supporting the preterm infant's developmental strivings and long-term well-being.


2003 ◽  
Vol 92 (0) ◽  
pp. 86-90 ◽  
Author(s):  
Savino F ◽  
Cresi F ◽  
Maccario S ◽  
Cavallo F ◽  
Dalmasso P ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (7) ◽  
pp. 467-477
Author(s):  
PASI NIEMELAINEN ◽  
MARTTI PULLIAINEN ◽  
JARMO KAHALA ◽  
SAMPO LUUKKAINEN

Black liquor high solids (about 80%) concentrators have often been found to suffer from aggressive corrosion. In particular, the first and second effect bodies are susceptible to corrosion attacks resulting in tube leaks and wall thinning, which limit the availability and lifetime of evaporator lines. Corrosion dynamics and construction materials have been studied extensively within the pulp and paper industry to understand the corrosion process. However, it has been challenging to identify root causes for corrosion, which has limited proactive measures to minimize corrosion damage. Corrosion of the first phase concentrator was studied by defining the potential regions for passive area, stress corrosion cracking, pitting corrosion, and general corrosion. This was achieved by using a technique called polarization scan that reveals ranges for the passive area in which the equipment is naturally protected against corrosion. The open circuit potential, also known as corrosion potential, and linear polarization resistance of the metal were monitored online, which allowed for definition of corrosion risks for stainless steel 304L and duplex stainless steels 2205 and SAF 2906. An online temperature measurement added insight to the analysis. A process diagnostics tool was used to identify root causes of the corrosion attacks. Many of the root causes were related to process conditions triggering corrosion. Once the metal surface was activated, it was difficult to repassivate the metal naturally unless a sufficient potential range was reached.


Sign in / Sign up

Export Citation Format

Share Document