scholarly journals Examination of possibilities of the strength modification in the case of FDM/FFF manufacturing technology

2020 ◽  
Vol 10 (2) ◽  
pp. 27-34
Author(s):  
Péter Ficzere ◽  
Norbert László Lukács

In many situations the result of the topology optimization or generative design can be manufactured only by additive manufacturing technologies. It is also important to know how the optimised shape behaves from the mechanical stiffness, the manufacturing technology and beneficial point of view. These two different goals can be combined and just the infill properties can be changed and optimised within the main body of 3D printed part.

Author(s):  
Sven Maricic ◽  
Iva Mrsa Haber ◽  
Ivan Veljovic ◽  
Ivana Palunko

The aim of this paper is to investigate the possibility of drone optimization by selecting and testing the best material suitable for additive manufacturing technology and generative design approach, i. e. shape optimization. The use of additive manufacturing technology enables the creation of models of more complex shapes that are difficult or impossible to produce with conventional processing methods. The complex and unconventional design of the drone body can open up many possibilities for weight reduction while maintaining the strength of the drone body. By using 3D printing in addition to FEM (Finite Element Method) analysis, and generative design it can identify areas of the drone body that are overdrawn, allowing it to either lift off material or simply change the design at these areas. Choosing the right material for this application is crucial in order to optimise the mechanical properties of the material with weight, material cost, printability and availability of the material and the 3D printing method, while at the same time reducing environmental pollution. The goal is to reduce the drone mass by 15–20 % using generative design tools. Mass is an important segment when prototyping a drone. If the drone is too heavy, more lift power is needed to keep the drone in the air, so the propellers have to turn faster and use more energy. Consequently, the reduction of drone mass should increase the take-off weight. In this article 5 commercial drones of similar characteristics are compared with the final proposal of our 3D printed drone (Prototype 1). The rotor distance between the drones, the weight of the electric motor and the take-off weight are compared. The goal was to produce a prototype with a big rotor distance-to-weight ratio, and take-off weight bigger than observed drones have. The defined goal function was optimized in order to evaluate characteristics of 12 different 3D printed materials. Following properties: ultimate strength, stiffness, durability, printability of the material, and required bed and extruder temperature for printing were taken in consideration to select optimal material. Polycarbonate proved to be the best choice for 3D printing UAVs


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Ruben Foresti ◽  
Benedetta Ghezzi ◽  
Matteo Vettori ◽  
Lorenzo Bergonzi ◽  
Silvia Attolino ◽  
...  

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.


2019 ◽  
Vol 14 (1) ◽  
pp. 111-124
Author(s):  
Roberto Naboni ◽  
Anja Kunic

Overconsumption of resources is one of the greatest challenges of our century. The amount of material that is being extracted, harvested and consumed in the last decades is increasing tremendously. Building with new manufacturing technology, such as 3D Printing, is offering new perspectives in the way material is utilized sustainably within a construction. This paper describes a study on how to use Additive Manufacturing to support design logics inspired by the bone microstructure, in order to build materially efficient architecture. A process which entangles computational design methods, testing of 3D printed specimens, developments of prototypes is described. A cellular-based tectonic system with the capacity to vary and adapt to different loading conditions is presented as a viable approach to a material-efficient construction with Additive Manufacturing.


2020 ◽  
Vol 990 ◽  
pp. 61-66
Author(s):  
Jia Yi Lin ◽  
Wei Hua Cui ◽  
Bin Han ◽  
Hui Wang ◽  
Xi Hao Liu

With the rapid development of modern industry, mold as a basic hardware facility has become one of the important factors affecting the development of modern industry. The surface quality and working reliability of the mold have a direct impact on the quality of the part. Faced with a large number of failed molds in industrial production, fast and reliable mold repair technology can realize mold reuse under the premise of ensuring mold performance. It effectively shortens the construction period, saves costs and reduces mold waste. The article outlines the characteristics of wire and arc additive manufacturing technology, selective electron beam melting technology and laser cladding technology in additive manufacturing technology. The application characteristics of three additive manufacturing technologies in mold repair are analyzed. The application prospect of laser cladding technology in mold repair is pointed out. In view of the improved work reliability, the direction of laser cladding technology in the field of mold repair can be prospected.


2020 ◽  
pp. 030936462094971 ◽  
Author(s):  
Branko Štefanovič ◽  
Monika Michalíková ◽  
Lucia Bednarčíková ◽  
Marianna Trebuňová ◽  
Jozef Živčák

Case description: Conventional methods for producing custom prosthetic fingers are time-consuming, can be uncomfortable for the patient, and require a skilled prosthetist. The subject was a 40-year-old male with congenital absence of the thumb and related metacarpal bone on the right non-dominant hand, anomaly of the lengths of individual upper limb segments, and contracture of the elbow joint. This hand presentation made it impossible for him to perform thumb opposition, which is a very important function for common daily activities. Objective: The goal was to design an individual passive thumb prosthesis using free open-source software, 3D scanning technology, and additive manufacturing methods (i.e., fused filament fabrication). Study design: Case report. Treatment: Artificial thumb prostheses with two types of bases and fastening interfaces were designed and manufactured. One combination was chosen as the best alternative. Outcomes: The shape, positioning, firmness, and fastening of the prosthesis were compliant enough for the patient to be able to hold objects with his healthy fingers and artificial thumb. This innovative approach to fabrication of a custom thumb prosthesis provided considerable advantages in terms of custom sizing, manufacturing time, rapid production, iteration, comfort, and costs when compared to conventional methods of manufacturing a hand prosthesis. Conclusion: The methodology of designing and manufacturing a prosthetic thumb using 3D scanning and additive manufacturing technologies have been demonstrated to be adequate from a practical point of view. These technologies show potential for use in the practice of prosthetics.


2020 ◽  
Vol 27 (3) ◽  
pp. 71-81
Author(s):  
Mariusz Deja ◽  
Mieczysław Stanisław Siemiątkowski ◽  
Dawid Zieliński

AbstractThe dynamic development of additive manufacturing technologies, especially over the last few years, has increased the range of possible industrial applications of 3D printed elements. This is a consequence of the distinct advantages of additive techniques, which include the possibility of improving the mechanical strength of products and shortening lead times. Offshore industry is one of these promising areas for the application of additive manufacturing. This paper presents a decision support method for the manufacturing of offshore equipment components, and compares a standard subtractive method with an additive manufacturing approach. An analytic hierarchy process was applied to select the most effective and efficient production method, considering CNC milling and direct metal laser sintering. A final set of decision criteria that take into account the specifics of the offshore industry sector are provided.


2018 ◽  
Vol 919 ◽  
pp. 222-229
Author(s):  
Jiří Šafka ◽  
Filip Veselka ◽  
Martin Lachman ◽  
Michal Ackermann

The article deals with the topic of 3D printing of pressure vessels and their testing. The main focus of the research was on a 3D model of the pressure vessel, which was originally designed for a student formula racing car project. The described virtual 3D model was designed with regard to 3D printing. The physical model was manufactured using several additive manufacturing technologies. The first technology was FDM using ULTEM 1010 material. The next technology was SLS (Selective Laser Sintering) using polyamide materials (PA3200GF and PA2220). The last technology was SLA (Stereolithography) using a polypropylene material (Durable). Experimental evaluation of the vessels was carried out by a pressure test, which verified the compactness of the 3D printed parts and their possible porosity. At the end of the article, a comparison of each printed model is made in terms of their final price and weight, together with pressure and thermal resistance.


Sign in / Sign up

Export Citation Format

Share Document