scholarly journals FUNCTIONAL PROPERTIES OF POWDERED AND FRESH EGG ALBUMIN AND YOLK DETERMINATION

2020 ◽  
Vol 4 (3) ◽  
pp. 263-266
Author(s):  
A. Z. Sanusi ◽  
Z. S. Jibia ◽  
M. G. Garba ◽  
U. S. Salisu ◽  
S. Gaddafi

The study was carried out to evaluate the functional properties of fresh and powdered egg albumin and yolk. The experiment was carried out at Animal Product and Processing lab of the Department of Animal Science, Federal University Dutsinma. Fresh eggs were collect from the Departmental farm. Ten (10eggs) each were weighed and crushed into stainless dish and separated into albumin and yolk for sun drying. After 8 hours of sun drying the crystals were convert into powder form using grinding and sieving techniques. Samples of the powder albumen and yolk were then subjected to functional properties determination. Data collected were analyzed using Statistical Analysis System (SAS) version…2002. The result indicates that there is significant (P<0.05) differences in functional properties of both fresh and powdered Albumin. Egg white (Albumin) fresh had Foaming capacity and Foaming stability values of 20.00% and 9.66% while egg white (Albumin) powdered Foaming capacity and Foaming stability had a lesser values of 11.00 % and 2.33% respectively. The Emulsification capacity (EC) and Emulsification Stability (ES) of Fresh Albumin seems to differ having a lower value (P<0.05) functional properties of 7.00% and 2.66%, while the Emulsification capacity (EC) and Emulsification Stability (ES) of powdered Albumin had higher value (P<0.05) of 35.66% and 4.00%. Similarly the Water Absorption Capacity (WAC) and Swelling Capacity (SC) for Fresh Albumin have a lower value (P<0.05) of 1.00% and 2.00%, while the Water Absorption Capacity (WAC) and Swelling Capacity (SC) of powdered Albumin had higher

2020 ◽  
Vol 6 (02) ◽  
Author(s):  
MONIKA MATHUR ◽  
ANJU KUMARI ◽  
RAJBALA GREWAL

The physical and functional properties of selected cereal, pulses, millets and oil seed were studied. Physical properties of oat, barley, sorghum, chickpea, groundnut, flaxseed, finger millet, amaranth, maize, sesame seed ranged from 0.74 to 527.40 g Thousand seeds weight, 0.39 to 0.79 g bulk density, 0.002 to 0.45g/seed hydration capacity, 0.32 to 1.81 hydration index, 0.001 to 0.16 ml/seed swelling capacity and 0.13 to 0.56 swelling index. Water absorption capacity (2.36%) of sesame seed, gelation capacity (15.50%) of amaranth, emulsification capacity (52.56%) of flaxseed, swelling power (127.5%) of flaxseed, foam capacity (42.44%) of sesame seed and foam stability (99.29%) of finger millet was significantly higher. Finger Millet, amaranth and flaxseeds are high in mineral content. Oat and barley contain higher amount of dietary fiber. All these tested grains can be used for preparation of different type of nutritious products with better physical qualities.


2020 ◽  
Vol 11 (2) ◽  
pp. 115-119
Author(s):  
Ankur M. Arya ◽  
B. R. Singh ◽  
Samsher ◽  
Suresh Chandra ◽  
Neelesh Chauhan ◽  
...  

In the current experiments functional properties of jackfruit seed flour stored in HDPE and Aluminium foil pouches was evaluated during storage of 0 to 90 days. From the experiment it was concluded that the water absorption capacity decreases from 2.02 + 0.042 to 1.22 + 0.046 ml/g and from 2.02 + 0.042 to 1.28+ 0.046 ml/g for jackfruit seed flour in HDPE and Aluminium foil pouches, respectively. The oil absorption capacity increases as 2.10 + 0.045 to 2.40 + 0.047 ml/g and 2.10 + 0.045 to 2.85 + 0.047 ml/g jackfruit seed flour in HDPE and Aluminium foil pouches, respectively. The flour dispersibility decreases from 32.67 + 0.092 to 27.25 + 0.921% and from 32.67 + 0.092 to 28.82 + 0.468% for jackfruit seed flour in HDPE and Aluminium foil pouches, respectively. The foaming capacity decreases from 7.10 + 0.202 to 6.42 + 0.122 g/ml and from 7.10 + 0.202 to 6.56 + 0.071 g/ml for jackfruit seed flour in HDPE and Aluminium foil pouches, respectively.


2020 ◽  
pp. 41-57
Author(s):  
David T. Ishola ◽  
Mathew K. Bolade

This study evaluated flour blends from Wheat, Pearl millet and Andrographis paniculata leaf for functional properties and pasting characteristics profiling. The functional properties such as solubility, gelling capacity, water absorption capacity (WAC), Oil absorption capacity (OAC), Bulk density, foaming capacity and stability and swelling capacity and the pasting characteristics were studied. The inclusion of A. paniculata leaf flour in the blends revealed a significant general increase in water absorption capacity, oil absorption capacity, swelling capacity, and bulk density. However, a general decrease in the foaming capacity, solubility, and least gelation was observed as the inclusion of A. paniculata leaf flour increased. The pasting properties of WPMF (flour blend without the inclusion of A. paniculata leaf flour) exhibited the following values: peak viscosity (658 RVU), breakdown (372 RVU), final viscosity (923 RVU), setback (637 RVU), peak time (5.07 min), and pasting temperature (84.8oC). The inclusion of A. paniculata leaf flour in the blends led to a significant general decrease in all the pasting factors. The inclusion of A. paniculata had a significant effect on the functional and pasting properties of wheat-pearl millet based flour.


2020 ◽  
Vol 45 (3) ◽  
Author(s):  
K. O. Soetan ◽  
A. A. Adeola

Underutilized and neglected legumes have numerous nutritional potentials with great contributions to food security but they are usually excluded from research and development agenda. This study evaluates the nutritional and functional properties of six different underutilized and neglected legumes; Lima bean (LB) (Phaseolus lunatus) (2006-009), Bambara groundnut (BG) (Vigna subterranea) (TVSU- 1482), winged bean (WB) (Psophocarpus tetragonolobus) (Tpt-48), jack bean (JB) (Canavalia ensiformis) (Tce-4), sword bean (SB) (Canavalia gladiata) (Tcg-4) and African yam bean (AYB) (Sphenostylis stenocarpa) (TSS-95) from the Genetic Resources Unit (GRU), International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria. Nutritional and functional properties were evaluated using proximate composition, mineral analyses and functional properties like bulk density, water absorption capacity, oil absorption capacity, emulsion capacity and dispersibility. All the procedures were carried out using standard protocols. Statistical analysis was done using descriptive statistics. Results of proximate analysis showed that crude protein ranged from18.88 0.15%(WB) to 26.60±0.14%(AYB), crude fat ranged from 1.84 0.02% (JB) to 6.39 0.03% (BG), crude fibre ranged from 3.70 ±0.00% (AYB) to 5.04 0.03% (SB), ash ranged from 3.10 ± 0.14% (AYB) to 4.66 0.02% (LB), nitrogen free extract ranged from 55.60 0.04% (SB) to 62.97 0.12% (WB), moisture content ranged from 5.75 0.48% (AYB) to 10.77 0.03% (JB), dry matter ranged from 89.23 0.03% (JB) to 94.25 ± 0.488% (AYB) and gross energy ranged from 4.39 0.003 kcal/g (SB) to 4.66 0.00 (BG). Mineral content results revealed that calcium varied from 0.14 0.000% (LB) to 0.23 0.0003% (AYB), phosphorus varied from 0.20 0.0001% (AYB) to 0.38 0.00% (BG), sodium varied from 0.12 0.00% (LB and WB) to 0.35 0.0006% (AYB), potassium varied from 0.69 0.00% (LB) to 1.12 0.00% (BG), magnesium varied from 0.15 0.0002% (AYB) to 0.27 0.000% (BG) and iron varied from 44.84 0.03 (mg/g) (WB) to 80.98 0.0007(mg/g) (AYB). Results of functional properties showed that bulk density ranged from 0.45±0.04 g/mL (WB) to 0.77±0.08 g/mL (SB), water absorption capacity ranged from 168.33±0.03 g/100g (LB) to 183.62±0.01 g/100g (SB), oil absorption capacity ranged from 146.54 ±0.02 g/100g (LB) to 161.55±0.02 g/100g (JB), emulsion capacity ranged from 79.67 ±0.02 g/100g (LB) to 89.46±0.02 g/100g (SB) and dispersibility ranged from81.0±1.41%(SB) to 86.5±0.71% (BG). The study concluded that all the underutilized legumes have varying nutritional and functional properties, which should be exploited for nutritional benefits and industrial applications, as a solution to the problem of food shortage, especially in the developing countries.


2019 ◽  
pp. 1-5
Author(s):  
O. I. Ola ◽  
S. O. Opaleye

Bambara nut (Vigna subterrenean) is a cheap source of leguminous protein that can be a good substitute for relatively expensive animal protein to reduce malnutrition. Despite its potentials, it remains underutilized owing in part to long cooking time, presence of antinutritional factors and drudgery in dehulling. In this regard, this study determined effects of fermentation on antinutritional and functional properties of bambara nut flour. Bambara nut was procured from local market in Abeokuta while pure culture of Rhizopus oligosporous was obtained at the Department of Food Science and Engineering, Ladoke Akintola University of Technology. Bambara nut was fermented for 12, 24, 36, 48, 60 and 72h at 32ºC and dried in oven (55ºC/24 h). The antinutritional (tannin, oxalate, phytate, and trypsin inhibitor) and functional properties (water-absorption-capacity, solubility and swelling power) of the composite flour were determined. The data obtained were subjected to descriptive and inferential statistics and significance established at P=.05. Respective range of values for tannin, oxalate, phytate and trypsin inhibitor were 0.08 - 0.32, 0.72 - 1.49, 0.15 - 3.64 and 0.42 - 3.25 mg/g, respectively. Water absorption capacity, solubility and swelling power ranged from 8.67 - 11.04, 52.59 - 53.07, 9.20 - 10.16 and 9.14 9.16%,  respectively. The fermentation process reduced the antinutritional factors and increased the protein content.


Author(s):  
Nikhil D. Solanke Pradeep P. Thorat ◽  
Jayashri Ughade

The purpose of this study is to determine the quality of chickpea and black gram flour used in preparation of traditional products. As the study of physical properties of flour, both chickpea as well as black gram flour shows higher in bulk density. Water absorption index show lower level of both chickpea as well as black gram flour and water solubility index shows both chickpea as well as black gram flour in between bulk density and water absorption index. While the functional properties of flour, water absorption capacity lower for chickpea flour but higher oil absorption capacity. Higher the water absorption capacity for black gram flour and lower the oil absorption capacity for black gram. This concluded that bulk density for both chickpea flour and black gram is highest while oil absorption capacity is lower in both chickpea flour and black gram flours.


2021 ◽  
Vol 14 (2) ◽  
pp. 117
Author(s):  
Edy Subroto ◽  
Rossi Indiarto ◽  
Endah Wulandari ◽  
Astri Puji Astari

<p>Adlay (Coix lacryma-jobi L.) is a potential source of starch but has not been utilized optimally. Native adlay starch has several weaknesses such as functional properties of low swelling volume and solubility, prone to retrogradation, and low stability. Physical modification of ultrasonication and chemical modification by oxidation using ozone can be an alternative to improve the functional properties of adlay starch through the formation of porous starch. The aim of this research was to produce porous adlay starch by ultrasonication and ozonation. The study consisted of several different treatments on hanjeli starch (ozonation starch, ultrasonication of 15 minutes, ultrasonication of 30 minutes, combined ultrasonication of 15 minutes and 30 minutes with ozonation). The results showed the appearance of pores on the surface of the granules of modified adlay starch with the best results being modified combination of ultrasonication 30 minutes and ozonation, which resulted in a decrease in swelling volume from 18.13 ± 3.98 mL/g to 15.71 ± 0.35 mL/g, an increase in solubility from 6.76 ± 0.62% to 9.59 ± 0.44%, and a decrease in water absorption capacity from 1.25 ± 0.02 g/g to 1.13 ± 0.02 g/ g. Modification of adlay starch by ultrasonication, ozonation, and their combination effectively produced porous starch granules, but did not cause the formation of new functional groups in starch.</p>


2019 ◽  
Vol 35 (6) ◽  
pp. 1760-1766
Author(s):  
Habibat Omolara Adubiaro ◽  
Bolanle Morayo Babalola ◽  
Abdul Ademola Olaleye ◽  
Eunice Moriyike Ogunbusola ◽  
Toibudeen Adesegun Sanni ◽  
...  

Evaluation of the effects of salts on the functional properties of Adansonia digitata seed flour was investigated. Sodium chloride (NaCl), calcium chloride (CaCl2), potassium chloride (KCl), sodium ethanoate (CH3COONa) and sodium nitrate (NaNO3) salts were the salts used to carry out the investigation. The results obtained revealed that the 18% least gelation concentration recorded with distilled water was improved in the presence of salt solutions to values from 8% and 16%. Results for water absorption capacity showed a decrease from 220 in distilled water to between 136 and 220 when salt solutions were used. An increase in foaming capacity from 12.4 in the absence of salt, up to values between 24.2 and 114.4 in the presence of salt was observed. The presence of NaCl on Adansonia digitata seed flour recorded the lowest foaming stability while CH3COONa recorded the highest values; from the result it was observed that the type of salt used and its concentration had a great impact on the variation of protein solubility of Adansonia digitata seed flour with solutions of different pH.


2021 ◽  
pp. 13-22
Author(s):  
Ihemeje Austin ◽  
Akujobi, Ijeoma Chidinma ◽  
Kabuo Canice Obioma Obinna

Objective: The study aimed at production and quality evaluation of composite flours and cookies from cassava (Maniholt esculenta) -grey speckled palapye cowpea (Vigna sinensis). Methods: Flour was respectively produced from cassava and palapye cowpea. The flours of cassava and palapye cowpea were mixed in the ratios of 100:0, 90:10, 80:20 and 70:30 respectively before being analyzed for antinutrient and functional properties. Cookies were produced from the flours and then evaluated for their respective nutrient and organoleptic attributes.  Data was analysed using using spss version 21.0. Results: The anti-nutrient concentration ranged from 0.83 to 1.25% (phytate), 0.07 to 0.19% (phenol), 0.12 to 0.17% (tannin), 0.09 to 0.21 Tiu/mg (trypsin inhibitor) and 0.28 to 0.88 mg/kg (hydrogen cyanide). The functional properties were found to be within 0.47 to 0.58 g/ml (bulk density), 1.62 to 2.04 g/g (capacity), 1.58% to 2.06 g/g (oil absorption capacity), 1.26 to 1.74 g/ml (swelling capacity) and 10.47 to 14.86% (foaming capacity). Proximate composition of the cookies samples showed 9.43 to 10.77% (moisture), 2.03 to 6.88% (protein), 1.03 to 1.91% (fat), 1.24 to 2.55% (ash), 3.22 to 4.26% (fibre) and 76.01 to 80.82% (carbohydrate).  The sensory scores of the cookies ranged from 6.2 to 7.3 on the hedonic scale. Conclusion: The cassava-grey speckled cowpea flour proved satisfactory in cookies production and could also serve well in formulations for other food products.


Sign in / Sign up

Export Citation Format

Share Document