Input of coarse-grained siliciclastics into the Pyrenean Basin during the PETM (2): a river-dominated fan delta within a carbonate platform system

2014 ◽  
Vol 31 ◽  
pp. 179-180 ◽  
Author(s):  
Victoriano Pujalte
2006 ◽  
Vol 177 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Ludovic Mocochain ◽  
Georges Clauzon ◽  
Jean-Yves Bigot

Abstract The Messinian salinity crisis is typically recorded by evaporites in the abyssal plains of the Mediterranean Sea and by canyons incised into the Mediterranean margins and their hinterlands. However, the impacts of crisis on geomorphology and surface dynamics lasted, until canyons were filled by sediments in the Pliocene (fig. 2). In the mid-Rhône valley, the Ardeche Cretaceous carbonate platform is incised over 600 m by the Rhône Messinian canyon. The canyon thalweg is located – 236 m bsl (below sea level) in the borehole of Pierrelatte [Demarcq, 1960; fig. 1]. During the Pliocene, this canyon was flooded as a ria and infilled by a Gilbert type fan delta [Clauzon and Rubino, 1992; Clauzon et al., 1995]. The whole Messinian-Pliocene third order cycle [Haq et al., 1987] generated four benchmark levels. The first two are [Clauzon, 1996]: (i) The pre-evaporitic abandonment surface which is mapped around the belvedere of Saint-Restitut (fig. 1). This surface is synchronous [Clauzon, 1996] of the crisis onset (5.95 Ma) [Gautier et al., 1994; Krigjsman et al., 1999] and, consequently, is an isochronous benchmark. (ii) The Messinian erosional surface is also an isochronous benchmark due to the fast flooding [Blanc, 2002] of the Rhône canyon, becoming a ria at 5.32 Ma [Hilgen and Langereis, 1988]. These surfaces are the result of endoreic Mediterranean sea level fall more than a thousand meters below the Atlantic Ocean. A huge accommodation space (up to more than 1000 m) was created as sea-level rose up to 80 m above its present-day level (asl) during the Pliocene highstand of cycle TB 3.4 (from 5.32 to 3.8 Ma). During the Lower Pliocene this accommodation space was filled by a Gilbert fan delta. This history yields two other benchmark levels: (i) the marine/non marine Pliocene transition which is an heterochronous surface produced by the Gilbert delta progradation. This surface recorded the Pliocene highstand sea level; (ii) the Pliocene abandonment surface at the top of the Gilbert delta continental wedge. Close to the Rhône-Ardeche confluence, the present day elevations of the four reference levels are (evolution of base-level synthesized in fig. 4): (1) 312 m asl, (2) 236 m bsl, (3) 130 m asl, (4) 190 m asl. The Ardèche carbonate platform underwent karstification both surficial and at depth. The endokarst is characterized by numerous cavities organised in networks. Saint-Marcel Cave is one of those networks providing the most complete record (fig. 5). It opens out on the northern side of the Ardeche canyon at an altitude of 100 m. It is made up by three superposed levels extending over 45 km in length. The lower level (1) is flooded and functionnal. It extends beneath the Ardeche thalweg down to the depth of 10 m bsl reached by divers. The observations collected in the galleries lead us to the conclusion that the karst originated in the vadose area [Brunet, 2000]. The coeval base-level was necessarily below those galleries. The two other levels (middle (2) and upper (3)) are today abandoned and perched. The middle level is about 115 m asl and the upper one is about 185 m asl. They are horizontal and have morphologies specific to the phreatic and temporary phreatic zone of the karst (fig. 6). In literature, the terracing of the Saint-Marcel Cave had been systematically interpreted as the result of the lowering by steps of the Ardeche base-level [Guérin, 1973; Blanc, 1995; Gombert, 1988; Debard, 1997]. In this interpretation, each deepening phase of the base level induces the genesis of the gravitary shaft and the abandonment of the previous horizontal level. The next stillstand of base level leads to the elaboration of a new horizontal level (fig. 7). This explanation is valid for most of Quaternary karsts, that are related to glacioeustatic falls of sea-level. However our study on the Saint-Marcel Cave contests this interpretation because all the shafts show an upward digging dynamism and no hint of vadose sections. The same “per ascensum” hydrodynamism was prevailing during the development of the whole network (figs. 8 and 9). We interpret the development of the Ardeche endokarst as related to the eustatic Messinian-Pliocene cycle TB 3.4/3.5 recorded by the Rhône river. The diving investigations in the flooded part of the Saint-Marcel Cave and also in the vauclusian springs of Bourg-Saint-Andeol reached - 154 m bsl. Those depths are compatible only with the incision of the Messinian Rhône canyon at the same altitude (−236 m bsl). The Saint-Marcel lower level would have develop at that time. The ascending shaping of levels 2 and 3 is thus likely to have formed during the ensuing sea-level rise and highstand during the Pliocene, in mainly two steps: (i) the ria stage controlled by the Mediterranean sea level rise and stillstand; (ii) the rhodanian Gilbert delta progradation, that controlled the genesis of the upper level (fig. 10).


2020 ◽  
Vol 191 ◽  
pp. 11
Author(s):  
Marilou de Vals ◽  
Renaldo Gastineau ◽  
Amélie Perrier ◽  
Romain Rubi ◽  
Isabelle Moretti

The choice of stones by the ancient Greeks to build edifices remains an open question. If the use of local materials seems generalized, allochthonous stones are usually also present but lead to obvious extra costs. The current work aims to have an exhaustive view of the origins of the stones used in the Sanctuary of Delphi. Located on the Parnassus zone, on the hanging wall of a large normal fault related to the Corinth Rift, this Apollo Sanctuary is mainly built of limestones, breccia, marbles, as well as more recent poorly consolidated sediments generally called pôros in the literature. To overpass this global view, the different lithologies employed in the archaeological site have been identified, as well as the local quarries, in order to find their origins. The different limestones are autochthons and come from the Upper Jurassic – Cretaceous carbonate platform of the Tethys Ocean involved in the Hellenides orogen. Those limestones of the Parnassus Massif constitute the majority of the rock volume in the site; a specific facies of Maastrichtian limestone called “Profitis Ilias limestone” has been used for the more prestigious edifices such as the Apollo Temple. The corresponding ancient quarry is located few kilometers west of the sanctuary. Then, slope breccia has been largely used in the sanctuary: it crops out in and around the site and is laying on top of the carbonates. Finally, the pôros appear to be very variable and seven different facies have been documented, including travertine, oolitic grainstone, marine carbonates and coarse-grained sandstones. All these recent facies exist in the south-east shore of the Gulf of Corinth, although – except for the grainstone – the quarries are not yet known.


2020 ◽  
Vol 157 (8) ◽  
pp. 1238-1264
Author(s):  
Giuseppe Nirta ◽  
Martin Aberhan ◽  
Valerio Bortolotti ◽  
Nicolaos Carras ◽  
Francesco Menna ◽  
...  

AbstractAlong the Dinaric–Hellenic orogen, the Late Jurassic – Early Cretaceous ophiolite obduction over the Adria continental margin was sealed by sedimentation of clastic terrestrial deposits rapidly followed by a widespread carbonate platform system since the Early Cretaceous period. These Cretaceous sediments presently crop out over areas of varying extension, from several hundred kilometre wide undeformed continuous covers to small-scale tectonic slivers involved in the tectonic stack following the latest Cretaceous–Palaeogene collision. These deposits are unconformably sedimented above the units formed by the Late Jurassic to Early Cretaceous nappe stacking above the eastern Adria continental margin. We studied these deposits in a large area between western Serbia and eastern Bosnia. In the studied area, these deposits are divided into three lithostratigraphic groups according to their age, depositional environment and type of underlying basement. The Mokra Gora Group sediments (upper Aptian–Maastrichtian) were deposited on top of previously obducted and weathered ophiolites, the Kosjerić Group (Cenomanian–Campanian) overlies composite tectonic units comprising obducted ophiolites and their underlying continental basement portions, while the Guča Group (Campanian–Maastrichtian) exclusively rests on top of continental basement. The reconstructed sedimentary evolution of these groups, together with the comparison with the syn- and post-obduction deposits at the front of the ophiolitic nappe(s) in a wider area of the internal Dinarides (e.g. Pogari Group and Bosnian flysch), allowed us to clarify the obduction mechanisms, including their tectonic context, the changes in depositional environments and the timing of depositional and tectonic events, and, in a wider view, shed light on the geodynamic evolution of the Dinaric belt.


Author(s):  
D., S. Reka

The following research took place in the Jamprong area, Tuban Regency, East Java Province within a study area of 2 km2. Physiographically, the study area is situated in the anticlinorium of the Rembang Zone. This research aims to define the reservoir potential of outcrop samples from the Ngrayong Formation as an analogue for the subsurface. In addition, the depositional environment and the age of the rock in the research area was determined. The Ngrayong Formation is regarded as a potential reservoir in the North East Java Basin. The accumulated data consists of stratigraphy, petrographic analysisand paleontological analysis of rock samples, and geological mapping has been carried out to determine the distribution of rocks. Facies were determined based on outcrop observations and comprise predominantly arkose sandstone facies with fine – coarse grained, moderately sorted and with cross-bedding, herringbone, and lamination, and another facies namely massive carbonate grainstone. Based on these facies, the interpreted depositional environment is the transition of tidal flat to shallow marine carbonate platform with relative biostratigraphic age of Middle Miocene, Langhian to Serravallian (M6-M8 planktonic foraminiferal biozones). Rocks in the study area have porosity >20% or very good and permeability >130 or fair based on petrographic observations, and this supports the interpretation of the Ngrayong Formations as a potential reservoir of hydrocarbons.


2007 ◽  
Vol 144 (2) ◽  
pp. 319-331 ◽  
Author(s):  
S. J. VEEVERS ◽  
A. T. THOMAS ◽  
P. TURNER

The uppermost Llandovery to lower Wenlock Coralliferous ‘Group’ in SW Pembrokeshire is here redefined as a single formation with two members. The Coralliferous Formation is approximately 150 m thick and comprises a basal unit of granule- to pebble-grade rudite beds, the Renney Slip Member, overlain by interbedded mudstones and fine sandstones of the Deadman's Bay Member. The Renney Slip Member lies unconformably above the Skomer Volcanic Group and includes 12.4 m of coarse grained, granule- and pebble-rich rudites, with beds up to 0.94 m thick. Three lithofacies are recognized within this unit: coarse, granule-rich rudite beds are interpreted as a variety of mass flow deposits, some of which have been reworked in a marine environment; thick sandstones with planar and ripple lamination are shoreface to offshore transition zone deposits; silty mudstones interbedded with very fine grained sandstones represent marine offshore deposits, formed largely below mean storm wave base. These facies associations, and abundant bioturbation, indicate an environment with a strong marine influence, and a proximal source of coarse grained sediment. The Renney Slip Member is reinterpreted in the context of a fan delta depositional model. At least seven cycles of deposition are recognized, each showing an upwards-fining pattern, representing deposition from fan delta, shoreface–transition zone to open marine environments. These patterns of deposition are attributed to localized tectonic movements causing variations in relative sea level. At the time the Renney Slip Member was deposited, the southern Welsh Basin margin is interpreted as a fault-block extensional margin, with the landmass of Pretannia to the south. Though fan-delta deposition took place southwards against the uplifted footwall of the Wenall Fault, the basin margin lay to the south of the Ritec Fault.


2009 ◽  
Vol 219 (1-4) ◽  
pp. 169-179 ◽  
Author(s):  
Michael J. O'Leary ◽  
Christopher T. Perry ◽  
Simon J. Beavington-Penney ◽  
John R. Turner

Sign in / Sign up

Export Citation Format

Share Document