Factor Graph-Based Cooperative Positioning Algorithm for Pedestrian Navigation Systems in Indoor Environments

Author(s):  
Chunyang Yu ◽  
Haiyu Lan ◽  
Yiran Luo ◽  
Shiwei Fan ◽  
Naser El-Sheimy
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chengkai Tang ◽  
Jiaqi Liu ◽  
Yi Zhang ◽  
Xingxing Zhu ◽  
Lingling Zhang

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3748 ◽  
Author(s):  
Chengkai Tang ◽  
Lingling Zhang ◽  
Yi Zhang ◽  
Houbing Song

The development of smart cities calls for improved accuracy in navigation and positioning services; due to the effects of satellite orbit error, ionospheric error, poor quality of navigation signals and so on, it is difficult for existing navigation technology to achieve further improvements in positioning accuracy. Distributed cooperative positioning technology can further improve the accuracy of navigation and positioning with existing GNSS (Global Navigation Satellite System) systems. However, the measured range error and the positioning error of the cooperative nodes exhibit larger reductions in positioning accuracy. In response to this question, this paper proposed a factor graph-aided distributed cooperative positioning algorithm. It establishes the confidence function of factor graphs theory with the ranging error and the positioning error of the coordinated nodes and then fuses the positioning information of the coordinated nodes by the confidence function. It can avoid the influence of positioning error and ranging error and improve the positioning accuracy of cooperative nodes. In the simulation part, the proposed algorithm is compared with a mainly coordinated positioning algorithm from four aspects: the measured range error, positioning error, convergence speed, and mutation error. The simulation results show that the proposed algorithm leads to a 30–60% improvement in positioning accuracy compared with other algorithms under the same measured range error and positioning error. The convergence rate and mutation error elimination times are only 1 / 5 to 1 / 3 of the other algorithms.


2021 ◽  
Author(s):  
lingling zhang ◽  
baoguo yu ◽  
Chengkai Tang ◽  
yi zhang ◽  
Houbing Song

Abstract The growing scale of marine exploration requires high-resolution underwater localization, which necessitates cooperation among underwater network nodes, considering the channel complexity and power efficiency. In this paper, we proposed factor graph weight particles aided distributed underwater nodes cooperative positioning algorithm (WP-DUCP). It capitalized on the factor graph and sum-product algorithm to decompose the global optimization to the product of several local optimization functions. Combined with the Gaussian parameters to construct the weighted particles and to realize the belief transfer, it shows low complexity and high efficiency, suitable to the energy-restricted and communication distance-limited underwater networks. In terms of convergence, localization resolution, and computation complexity, we conducted the simulation and real-test with comparison to the existing co-localization methods. The results verified a higher resolution of the proposed method with no extra computation burden.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 67006-67017 ◽  
Author(s):  
Shiwei Fan ◽  
Ya Zhang ◽  
Chunyang Yu ◽  
Minghong Zhu ◽  
Fei Yu

2005 ◽  
Vol 59 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Guenther Retscher ◽  
Allison Kealy

Recently new location technologies have emerged that can be employed in modern advanced navigation systems. They can be employed to augment Global Navigation Satellite System (GNSS) positioning techniques and dead reckoning as they offer different levels of positioning accuracies and performance. An integration of other technologies is especially required in indoor and outdoor-to-indoor environments. The paper gives an overview of the newly developed ubiquitous positioning technologies and their integration in navigation systems. Furthermore two case studies are presented, i.e., the improvement of land vehicle safety using Augmented Reality (AR) technologies and pedestrian navigation services for the guidance of users to certain University offices. In the first case study the integration of map matching into a Kalman filter approach is performed (referred to as “Intelligent Vehicle Navigation”) and its principle is briefly described. This approach can also be adapted for the pedestrian navigation service described in the second case study.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3243
Author(s):  
Robert Jackermeier ◽  
Bernd Ludwig

In smartphone-based pedestrian navigation systems, detailed knowledge about user activity and device placement is a key information. Landmarks such as staircases or elevators can help the system in determining the user position when located inside buildings, and navigation instructions can be adapted to the current context in order to provide more meaningful assistance. Typically, most human activity recognition (HAR) approaches distinguish between general activities such as walking, standing or sitting. In this work, we investigate more specific activities that are tailored towards the use-case of pedestrian navigation, including different kinds of stationary and locomotion behavior. We first collect a dataset of 28 combinations of device placements and activities, in total consisting of over 6 h of data from three sensors. We then use LSTM-based machine learning (ML) methods to successfully train hierarchical classifiers that can distinguish between these placements and activities. Test results show that the accuracy of device placement classification (97.2%) is on par with a state-of-the-art benchmark in this dataset while being less resource-intensive on mobile devices. Activity recognition performance highly depends on the classification task and ranges from 62.6% to 98.7%, once again performing close to the benchmark. Finally, we demonstrate in a case study how to apply the hierarchical classifiers to experimental and naturalistic datasets in order to analyze activity patterns during the course of a typical navigation session and to investigate the correlation between user activity and device placement, thereby gaining insights into real-world navigation behavior.


2020 ◽  
pp. 1-17
Author(s):  
Haiying Liu ◽  
Jingqi Wang ◽  
Jianxin Feng ◽  
Xinyao Wang

Abstract Visual–Inertial Navigation Systems (VINS) plays an important role in many navigation applications. In order to improve the performance of VINS, a new visual/inertial integrated navigation method, named Sliding-Window Factor Graph optimised algorithm with Dynamic prior information (DSWFG), is proposed. To bound computational complexity, the algorithm limits the scale of data operations through sliding windows, and constructs the states to be optimised in the window with factor graph; at the same time, the prior information for sliding windows is set dynamically to maintain interframe constraints and ensure the accuracy of the state estimation after optimisation. First, the dynamic model of vehicle and the observation equation of VINS are introduced. Next, as a contrast, an Invariant Extended Kalman Filter (InEKF) is constructed. Then, the DSWFG algorithm is described in detail. Finally, based on the test data, the comparison experiments of Extended Kalman Filter (EKF), InEKF and DSWFG algorithms in different motion scenes are presented. The results show that the new method can achieve superior accuracy and stability in almost all motion scenes.


2021 ◽  
Vol 11 (4) ◽  
pp. 1902
Author(s):  
Liqiang Zhang ◽  
Yu Liu ◽  
Jinglin Sun

Pedestrian navigation systems could serve as a good supplement for other navigation methods or for extending navigation into areas where other navigation systems are invalid. Due to the accumulation of inertial sensing errors, foot-mounted inertial-sensor-based pedestrian navigation systems (PNSs) suffer from drift, especially heading drift. To mitigate heading drift, considering the complexity of human motion and the environment, we introduce a novel hybrid framework that integrates a foot-state classifier that triggers the zero-velocity update (ZUPT) algorithm, zero-angular-rate update (ZARU) algorithm, and a state lock, a magnetic disturbance detector, a human-motion-classifier-aided adaptive fusion module (AFM) that outputs an adaptive heading error measurement by fusing heuristic and magnetic algorithms rather than simply switching them, and an error-state Kalman filter (ESKF) that estimates the optimal systematic error. The validation datasets include a Vicon loop dataset that spans 324.3 m in a single room for approximately 300 s and challenging walking datasets that cover large indoor and outdoor environments with a total distance of 12.98 km. A total of five different frameworks with different heading drift correction methods, including the proposed framework, were validated on these datasets, which demonstrated that our proposed ZUPT–ZARU–AFM–ESKF-aided PNS outperforms other frameworks and clearly mitigates heading drift.


Sign in / Sign up

Export Citation Format

Share Document