scholarly journals IMPROVEMENT OF METHODS AND TOOLS FOR OVERHEAD CONTACT LINES DIAGNOSTICS

2020 ◽  
Vol 1 (154) ◽  
pp. 28-32
Author(s):  
К. Pereverzyev

This paper describes developments of tools and methods in a wear of contact wire aspect, based on optical diagnostic systems and computer vision. In general, such diagnostic systems contribute towards improved service quality, reduced costs and increased security in railways. The contact wire is an important part of the OCL. It interacts with the pantographs which are mounted on the roof of trains and moving at various speeds. It is subject to abrasion, friction, scraping, corrosion, erosion, vibration, arcing and welding at different degrees of severity depending on the wire and collector strip materials, modes of interaction and the environmental conditions that defines the wear of contact wires. Measuring systems which automatically detect the degree of wire wear are necessary in order to carry out efficient OCL infrastructure management and condition-based maintenance of contact wire. The problem of wear measurement characterized by some important determining factors like lighting conditions, background scenery and the disparity of reflexives properties of the contact wire. Besides, in order to conduct an efficient inspection, the measures have to be carried out in a changing speed of inspection train. Finally, an important issues for designing and developing measurement systems are the number of wire in measurement range. Systems have to be able to measure not less than four contact wires which are simultaneously in a range of vision and the contact wire geometric parameters such as height and displacement (stagger). The measuring systems have to acquire, process and store a considerable amount of data in real time. Due to the amount of information to be processed, a high-performance architecture and effective algorithms are needed for real-time monitoring. The hardware and software modernization of a high-speed laser system for a contact wire parameters measurements are examined. Such modernization is fulfilled mostly by implementing a real-time high-speed compression algorithms and using LED backlighting. The results of the measurement of the contact wire’s wear obtained by a modernized high-speed laser system during an inspection trips on a new modern laboratory-car are given in this article. Keywords:, optical diagnostic systems, LED emitter,overhead contact lines of railways

Author(s):  
Manudul Pahansen de Alwis ◽  
Karl Garme

The stochastic environmental conditions together with craft design and operational characteristics make it difficult to predict the vibration environments aboard high-performance marine craft, particularly the risk of impact acceleration events and the shock component of the exposure often being associated with structural failure and human injuries. The different timescales and the magnitudes involved complicate the real-time analysis of vibration and shock conditions aboard these craft. The article introduces a new measure, severity index, indicating the risk of severe impact acceleration, and proposes a method for real-time feedback on the severity of impact exposure together with accumulated vibration exposure. The method analyzes the immediate 60 s of vibration exposure history and computes the severity of impact exposure as for the present state based on severity index. The severity index probes the characteristic of the present acceleration stochastic process, that is, the risk of an upcoming heavy impact, and serves as an alert to the crew. The accumulated vibration exposure, important for mapping and logging the crew exposure, is determined by the ISO 2631:1997 vibration dose value. The severity due to the impact and accumulated vibration exposure is communicated to the crew every second as a color-coded indicator: green, yellow and red, representing low, medium and high, based on defined impact and dose limits. The severity index and feedback method are developed and validated by a data set of 27 three-hour simulations of a planning craft in irregular waves and verified for its feasibility in real-world applications by full-scale acceleration data recorded aboard high-speed planing craft in operation.


2016 ◽  
Vol 110 (3) ◽  
pp. 463a
Author(s):  
Fuyu Kobirumaki-Shimozawa ◽  
Kotaro Oyama ◽  
Togo Shimozawa ◽  
Takashi Ohki ◽  
Takako Terui ◽  
...  

2019 ◽  
Vol 16 (8) ◽  
pp. 3419-3427
Author(s):  
Shishir K. Shandilya ◽  
S. Sountharrajan ◽  
Smita Shandilya ◽  
E. Suganya

Big Data Technologies are well-accepted in the recent years in bio-medical and genome informatics. They are capable to process gigantic and heterogeneous genome information with good precision and recall. With the quick advancements in computation and storage technologies, the cost of acquiring and processing the genomic data has decreased significantly. The upcoming sequencing platforms will produce vast amount of data, which will imperatively require high-performance systems for on-demand analysis with time-bound efficiency. Recent bio-informatics tools are capable of utilizing the novel features of Hadoop in a more flexible way. In particular, big data technologies such as MapReduce and Hive are able to provide high-speed computational environment for the analysis of petabyte scale datasets. This has attracted the focus of bio-scientists to use the big data applications to automate the entire genome analysis. The proposed framework is designed over MapReduce and Java on extended Hadoop platform to achieve the parallelism of Big Data Analysis. It will assist the bioinformatics community by providing a comprehensive solution for Descriptive, Comparative, Exploratory, Inferential, Predictive and Causal Analysis on Genome data. The proposed framework is user-friendly, fully-customizable, scalable and fit for comprehensive real-time genome analysis from data acquisition till predictive sequence analysis.


2007 ◽  
Author(s):  
Yuan Liu ◽  
Ping Yang ◽  
Shanqiu Chen ◽  
Lifang Ma ◽  
Bing Xu

Author(s):  
Huckleberry Febbo ◽  
Paramsothy Jayakumar ◽  
Jeffrey L. Stein ◽  
Tulga Ersal

Abstract Safe trajectory planning for high-performance automated vehicles in an environment with both static and moving obstacles is a challenging problem. Part of the challenge is developing a formulation that can be solved in real-time while including the following set of specifications: minimum time-to-goal, a dynamic vehicle model, minimum control effort, both static and moving obstacle avoidance, simultaneous optimization of speed and steering, and a short execution horizon. This paper presents a nonlinear model predictive control-based trajectory planning formulation, tailored for a large, high-speed unmanned ground vehicle, that includes the above set of specifications. The ability to solve this formulation in real-time is evaluated using NLOptControl, an open-source, direct-collocation based, optimal control problem solver in conjunction with the KNITRO nonlinear programming problem solver. The formulation is tested with various sets of the specifications. A parametric study relating execution horizon and obstacle speed indicates that the moving obstacle avoidance specification is not needed for safety when the planner has a small execution horizon and the obstacles are moving slowly. However, a moving obstacle avoidance specification is needed when the obstacles are moving faster, and this specification improves the overall safety without, in most cases, increasing the solve-times. The results indicate that (i) safe trajectory planners for high-performance automated vehicles should include the entire set of specifications mentioned above, unless a static or low-speed environment permits a less comprehensive planner; and (ii) the resulting formulation can be solved in real-time.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Pablo Martinez ◽  
Hovagim Bakardjian ◽  
Andrzej Cichocki

We propose a new multistage procedure for a real-time brain-machine/computer interface (BCI). The developed system allows a BCI user to navigate a small car (or any other object) on the computer screen in real time, in any of the four directions, and to stop it if necessary. Extensive experiments with five young healthy subjects confirmed the high performance of the proposed online BCI system. The modular structure, high speed, and the optimal frequency band characteristics of the BCI platform are features which allow an extension to a substantially higher number of commands in the near future.


Author(s):  
И.Г. Малыгин ◽  
О.А. Королев

Современные интеллектуальные видеосистемы наблюдения стали все больше акцентироваться на передачу в реальном времени высококачественного видео различных важных событий, в том числе чрезвычайных ситуаций. Для высокопроизводительных систем передачи видеоинформации нового поколения необходимы эффективные структурные решения, способные как к высокой скорости передачи, так и к высокой точности вычисления. Такие структуры должны обрабатывать огромные последовательности изображений, при этом каждый видеопоток должен характеризоваться высоким разрешением с минимальным шумом и искажениями, потребляя при этом как можно меньше мощности. Спектральные алгоритмы обработки видеоинформации являются наиболее распространенным способом передачи в реальном времени, в частности дискретное косинусное преобразование. При этом исходное изображение подвергается преобразованию из пространственной в частотную область с целью сжатия путём уменьшения или устранения избыточности визуальных данных. Неявное вычисление преобразования последовательности 8-точечного массива приводит к эффективному сжатию, требующему не более пятикратного выполнения операции умножения. В статье предложены архитектура с низкой структурой сложности и метод преобразования изображений на основе алгебры целых чисел. Modern intelligent video surveillance systems have become increasingly focused on real-time transmission of high-quality video of various important events, including emergencies. For high-performance video information transmission systems of the new generation, efficient structural solutions are needed that are capable of both high transmission speed and high calculation accuracy. Such structures must process huge sequences of images, and each video stream must be characterized by high resolution and with minimal noise and distortion, while consuming as little power as possible. Spectral algorithms for processing video information are the most common method of transmission in real time, in particular the discrete cosine transform. In this case, the original image is transformed from the spatial to the frequency domain in order to compress by reducing or eliminating the redundancy of visual data. Implicitly calculating the sequence transformation of an 8-point array results in efficient compression, requiring no more than five times the multiplication operation. In this paper, we propose an architecture with a low complexity structure and image transformation method based on the algebra of integers


2013 ◽  
Vol 819 ◽  
pp. 322-327
Author(s):  
Jing Chuan Dong ◽  
Tai Yong Wang ◽  
Bo Li ◽  
Xian Wang ◽  
Zhe Liu

As the demand for high speed and high precision machining increases, the fast and accurate real-time interpolation is necessary in modern computerized numerical control (CNC) systems. However, the complexity of the interpolation algorithm is an obstacle for the embedded processor to achieve high performance control. In this paper, a novel interpolation processor is designed to accelerate the real-time interpolation algorithm. The processor features an advanced parallel architecture, including a 3-stage instruction pipeline, very long instruction word (VLIW) support, and asynchronous instruction execution mechanism. The architecture is aimed for accelerating the computing-intensive tasks in CNC systems. A prototype platform was built using a low-cost field programmable gate array (FPGA) chip to implementation the processor. Experimental result has verified the design and showed the good computing performance of the proposed architecture.


Sign in / Sign up

Export Citation Format

Share Document