Design and Implementation of an Interpolation Processor for CNC Machining

2013 ◽  
Vol 819 ◽  
pp. 322-327
Author(s):  
Jing Chuan Dong ◽  
Tai Yong Wang ◽  
Bo Li ◽  
Xian Wang ◽  
Zhe Liu

As the demand for high speed and high precision machining increases, the fast and accurate real-time interpolation is necessary in modern computerized numerical control (CNC) systems. However, the complexity of the interpolation algorithm is an obstacle for the embedded processor to achieve high performance control. In this paper, a novel interpolation processor is designed to accelerate the real-time interpolation algorithm. The processor features an advanced parallel architecture, including a 3-stage instruction pipeline, very long instruction word (VLIW) support, and asynchronous instruction execution mechanism. The architecture is aimed for accelerating the computing-intensive tasks in CNC systems. A prototype platform was built using a low-cost field programmable gate array (FPGA) chip to implementation the processor. Experimental result has verified the design and showed the good computing performance of the proposed architecture.

Author(s):  
Qin Hu ◽  
Youping Chen ◽  
Xiaoliang Jin ◽  
Jixiang Yang

Linear tool path segments of computer numerical control (CNC) machine tools need to be smoothed and interpolated in order to guarantee continuous and steady machining. However, because of the highly nonlinear relation between arc lengths and spline parameters, it is difficult to develop algorithms to simultaneously achieve real-time corner smoothing and interpolation with high-order continuity, although it is important to guarantee both high calculation efficiency and good dynamic performance of high-speed CNC machining. This paper develops a computationally efficient real-time corner smoothing and interpolation algorithm with C3 continuous feature. The corners at the junction of linear segments are smoothed by inserting Pythagorean-hodograph (PH) splines under the constraints of user-defined tolerance limits. Analytical solutions of the arc length and curvature of the smoothed tool path are obtained by evaluating a polynomial function of the spline parameter. The smoothed tool path is interpolated in real time with continuous and peak-constrained jerk. Simulations and experimental results show that the proposed tool path smoothing and interpolation algorithm can be executed in real time with 0.5 ms control period. Acceleration and jerk continuity of each axis are achieved along the tool path. Comparisons with existing corner smoothing algorithms show that the proposed method has lower jerk than existing C2 algorithms and the real-time interpolation algorithms based on the Taylor series expansion.


2012 ◽  
Vol 155-156 ◽  
pp. 120-124
Author(s):  
Wei Jing Bu

The design of the CNC system to realize the function of the dedicated processor/modular is very select. Low cost of the ARM processor with Windows CE operating system is perfect for soft real-time tasks, such as the system state display, program explains, etc. The high performance DSP processors µ C/OS-II operating system is real-time tasks efforts, which is responsible for interpolation, speed control. In addition, to meet demand for the reconstruction of the design and flexible manufacturing, a reconfigurable based on FPGA technology for module, meet the functional requirement, build the PLC based on real-time Ethernet field bus network for simple connections between executors in the numerical control system controller.


2012 ◽  
Vol 433-440 ◽  
pp. 4565-4570
Author(s):  
Guo Sheng Xu

Due to the project in this article, a kind of image capture and processing system based on FPGA is proposed, the low cost high performance FPGA is selected as the main core, the design of the whole system including software and hardware are implemented. The system achieves to functions of the high -speed data collection, the high -speed video data compression the real time video data Network Transmission and the real time compression picture data storage. the data processed was transferred to PC through USB2.0 real-time to reconstruct defects microscopic images. Experimental results prove right and feasible by adopting the algorithm and scheme proposed in this paper.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


2011 ◽  
Vol 105-107 ◽  
pp. 2217-2220
Author(s):  
Mu Lan Wang ◽  
Jian Min Zuo ◽  
Kun Liu ◽  
Xing Hua Zhu

In order to meet the development demands for high-speed and high-precision of Computer Numerical Control (CNC) machine tools, the equipped CNC systems begin to employ the technical route of software hardening. Making full use of the advanced performance of Large Scale Integrated Circuits (LSIC), this paper puts forward using Field Programmable Gates Array (FPGA) for the functional modules of CNC system, which is called Intelligent Software Hardening Chip (ISHC). The CNC system architecture with high performance is constructed based on the open system thought and ISHCs. The corresponding programs can be designed with Very high speed integrate circuit Hardware Description Language (VHDL) and downloaded into the FPGA. These hardening modules, including the arithmetic module, contour interpolation module, position control module and so on, demonstrate that the proposed schemes are reasonable and feasibility.


2021 ◽  
Vol 11 (16) ◽  
pp. 7554
Author(s):  
Isiaka Alimi ◽  
Romil Patel ◽  
Nuno Silva ◽  
Chuanbowen Sun ◽  
Honglin Ji ◽  
...  

This paper reviews recent progress on different high-speed optical short- and medium-reach transmission systems. Furthermore, a comprehensive tutorial on high-performance, low-cost, and advanced optical transceiver (TRx) paradigms is presented. In this context, recent advances in high-performance digital signal processing algorithms and innovative optoelectronic components are extensively discussed. Moreover, based on the growing increase in the dynamic environment and the heterogeneous nature of different applications and services to be supported by the systems, we discuss the reconfigurable and sliceable TRxs that can be employed. The associated technical challenges of various system algorithms are reviewed, and we proffer viable solutions to address them.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Sign in / Sign up

Export Citation Format

Share Document