scholarly journals DIAGNOSTIC SYSTEM OF DERMATITIS BASED ON FUZZY LOGIC USING MATLAB 7.0

CCIT Journal ◽  
2010 ◽  
Vol 4 (1) ◽  
pp. 89-100
Author(s):  
Eneng Tita Tosida ◽  
Sri Setyaningsih ◽  
Agus Sunarya

This paper describes a fuzzy approach to computer-aided medical diagnosis in a clinical context for dermatitis. This research will use Mamdani fuzzy inference system for determining Dermatitis risk level. The Diagnostic system of Dermatitis based on Fuzzy logic are constructed with seven indication variables. These variables have different intervals and used for determining status of domains in membership function of variables. Knowledge base in this system is constructed by production rules (IF-THEN). Fire Strength are obtained in each fuzzy rules base for each type of Dermatitis, then composite by using Max-Min method. The final result is an output namely the risk Dermatitis level.


Author(s):  
Asogbon Mojisola Grace ◽  
Samuel Oluwarotimi Williams

Credit risk evaluation techniques that aid effective decisions in credit lending are of great importance to the financial and banking industries. Such techniques assist credit managers to minimize the risks often associated with wrong decision making. Several techniques have been developed in the time past for credit risk evaluation and these techniques suffer from one form of limitation or the other. Recently, powerful soft computing tools have been proposed for problem solving among which are the neural networks and fuzzy logic. In this study, a neural network based on backpropagation learning algorithm and a fuzzy inference system based on Mamdani model were developed to evaluate the risk level of credit applicants. A comparative analysis of the performances of both systems was carried out and experimental results show that neural network with an overall prediction accuracy of 96.89% performed better than the fuzzy logic method with 94.44%. Finding from this study could provide useful information on how to improve the performance of existing credit risk evaluation systems.



Author(s):  
Krasimir Ognyanov Slavyanov

This article offers an original classification procedure based on Mamdani fuzzy inference system (FIS) dedicated to compute multiple criterions each from different type of psychological profiles. The modelling and information analysis of the FIS are developed to draw a general conclusion from several psychological criterions in order to provide better pre-course lecturer preparation and thus better students’ perception. Simulation experiments are carried out in MATLAB environment.



2021 ◽  
Vol 9 (1) ◽  
pp. 49
Author(s):  
Tanja Brcko ◽  
Andrej Androjna ◽  
Jure Srše ◽  
Renata Boć

The application of fuzzy logic is an effective approach to a variety of circumstances, including solutions to maritime anti-collision problems. The article presents an upgrade of the radar navigation system, in particular, its collision avoidance planning tool, using a decision model that combines dynamic parameters into one decision—the collision avoidance course. In this paper, a multi-parametric decision model based on fuzzy logic is proposed. The model calculates course alteration in a collision avoidance situation. First, the model collects input data of the target vessel and assesses the collision risk. Using time delay, four parameters are calculated for further processing as input variables for a fuzzy inference system. Then, the fuzzy logic method is used to calculate the course alteration, which considers the vessel’s safety domain and International Regulations for Preventing Collisions at Sea (COLREGs). The special feature of the decision model is its tuning with the results of the database of correct solutions obtained with the manual radar plotting method. The validation was carried out with six selected cases simulating encounters with the target vessel in the open sea from different angles and at any visibility. The results of the case studies have shown that the decision model computes well in situations where the own vessel is in a give-way position. In addition, the model provides good results in situations when the target vessel violates COLREG rules. The collision avoidance planning tool can be automated and serve as a basis for further implementation of a model that considers the manoeuvrability of the vessels, weather conditions, and multi-vessel encounter situations.



2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Arati M. Dixit ◽  
Harpreet Singh

The real-time nondestructive testing (NDT) for crack detection and impact source identification (CDISI) has attracted the researchers from diverse areas. This is apparent from the current work in the literature. CDISI has usually been performed by visual assessment of waveforms generated by a standard data acquisition system. In this paper we suggest an automation of CDISI for metal armor plates using a soft computing approach by developing a fuzzy inference system to effectively deal with this problem. It is also advantageous to develop a chip that can contribute towards real time CDISI. The objective of this paper is to report on efforts to develop an automated CDISI procedure and to formulate a technique such that the proposed method can be easily implemented on a chip. The CDISI fuzzy inference system is developed using MATLAB’s fuzzy logic toolbox. A VLSI circuit for CDISI is developed on basis of fuzzy logic model using Verilog, a hardware description language (HDL). The Xilinx ISE WebPACK9.1i is used for design, synthesis, implementation, and verification. The CDISI field-programmable gate array (FPGA) implementation is done using Xilinx’s Spartan 3 FPGA. SynaptiCAD’s Verilog Simulators—VeriLogger PRO and ModelSim—are used as the software simulation and debug environment.



2018 ◽  
Vol 7 (3.27) ◽  
pp. 209
Author(s):  
Susmita Mishra ◽  
M Prakash ◽  
A Hafsa ◽  
G Anchana

Processing of Magnetic Resonance Imaging(MRI) is one of the widely known best techniques to diagnose brain tumor since it gives better results than ultrasound or X-Ray images. The main objective is to diagnose the presence and extraction of brain tumor using MRI images. Image preprocessing includes contrast stretching, noise filtering and Adaptive Histogram Equalization(AHE). AHE gives a graphical representation of digital image without enhancing above the desired level. The next stage involves transferring the redundant information in input image to reduced set of features is called feature selection and is done by color, shape or texture of an image. Image is segmented using incorporation of Artificial Neural Networks(ANN) and Fuzzy logic called Adaptive Neuro-Fuzzy Inference System(ANFIS) wherein we get the desired output to differentiate tumor affected and normal image with its severity level. Since we deal with uncertainty much more, fuzzy logic serves as a vibrant tool in representing human knowledge as IF-THEN rules. MATLAB has been implemented in detection and extraction of tumor at an early stage. 



2020 ◽  
Author(s):  
Adel Bakhshipour ◽  
Hemad Zareiforoush

Abstract A combination of decision tree (DT) and fuzzy logic techniques was used to develop a fuzzy model for differentiating peanut plant from weeds. Color features and wavelet-based texture features were extracted from images of peanut plant and its three common weeds. Two feature selection techniques namely Principal Component Analysis (PCA) and Correlation-based Feature Selection (CFS) were applied on input dataset and three Decision Trees (DTs) including J48, Random Tree (RT), and Reduced Error Pruning (REP) were used to distinguish between different plants. In all cases, the best overall classification accuracies were achieved when CFS-selected features were used as input data. The obtained accuracies of J48-CFS, REP-CFS, and RT-CFS trees for classification of the four plant categories namely peanut plant, Velvetleaf, False daisy, and Nicandra, were 80.83%, 80.00% and 79.17% respectively. Along with these almost low accuracies, the structures of the decision trees were complex making them unsuitable for developing a fuzzy inference system. The classifiers were also used for differentiating peanut plant from the group of weeds. The overall accuracies on training and testing datasets were respectively 95.56% and 93.75% for J48-CFS; 92.78% and 91.67% for REP-CFS; and 93.33% and 92.59% for RT-CFS DTs. The results showed that the J48-CFS and REP-CFS were the most appropriate models to set the membership functions and rules of the fuzzy classifier system. Based on the results, it can be concluded that the developed DT-based fuzzy logic model can be used effectively to discriminate weeds from peanut plant in the form of machine vision-based cultivating systems.



CAUCHY ◽  
2015 ◽  
Vol 4 (1) ◽  
pp. 10 ◽  
Author(s):  
Venny Riana Riana Agustin ◽  
Wahyu Henky Irawan

Tsukamoto method is one method of fuzzy inference system on fuzzy logic for decision making. Steps of the decision making in this method, namely fuzzyfication (process changing the input into kabur), the establishment of fuzzy rules, fuzzy logic analysis, defuzzyfication (affirmation), as well as the conclusion and interpretation of the results. The results from this research are steps of the decision making in Tsukamoto method, namely fuzzyfication (process changing the input into kabur), the establishment of fuzzy rules by the general form IF a is A THEN B is B, fuzzy logic analysis to get alpha in every rule, defuzzyfication (affirmation) by weighted average method, as well as the conclusion and interpretation of the results. On customers at the case, in value of 16 the quality of services, the value of 17 the quality of goods, and value of 16 a price, a value of the results is 45,29063 and the level is low satisfaction



2019 ◽  
Vol 8 (4) ◽  
pp. 8961-8964

Software is a basic system that acts as a major key part in general functioning system like securing the need of performance and scope of the system. Here the security is given to unauthorized user as unauthorized client that casually gets the change or modification within the system by effecting the efficiency and functionality of the system. So in order to overcome this issue new improved software is taken that improves the system performance and security. the paper represents a new fuzzy logic based system for handling secured attribute and assessment in software. Based on this reason we propose PC1 and bugs dataset for fuzzy inference system can be used. This secured system model helps software engineers to select secured and safety software for the performance and ambiguity.



Sign in / Sign up

Export Citation Format

Share Document