scholarly journals Response of Viral Specific CD4 T Cells to in vitro Stimulation with Vaccine and Wild Measles Virus Strains in Vaccinated and Naturally Infected Subjects

2014 ◽  
Vol 63 (2) ◽  
pp. 203-209
Author(s):  
AGNIESZKA CZĘŚCIK ◽  
MILENA DUNAL-SZCZEPANIAK ◽  
AGNIESZKA TRZCIŃSKA ◽  
JOANNA SIENNICKA

With the implementation of the WHO strategic plan for the elimination of measles, the number of measles cases in European Region has decreased. However, outbreaks are still observed. Although most measles cases affect unvaccinated individuals, cases with vaccinated persons are also reported. Furthermore, it was described that a high percentage of young people in Poland exhibit no presence of anti-MeV IgG despite the high level of vaccination covering no less than 97% of the Polish population. Strong evidence exists that immunity to measles is complex and depends on both the humoral and cellular response and although antibodies have been used as correlates of immunity, it is increasingly being considered that antibody-based definitions of vaccine success or failure may be incomplete. Here, we investigated immunity to measles as the reactivity of CD4 T cells to stimulation with vaccine as well as wild strains of measles virus (MeV) isolated in Poland, in young vaccinated persons and subjects infected naturally. Evidence for the presence of MeV-specific memory cells years after infection or vaccination was found, however the cells ofvaccinees and naturally infected subjects reacted differently in contact with wild and vaccine MeV strains. Furthermore, the presence of a significant proportion of non-responder vaccinees was observed. In conclusion, our results may have implications for studies on the monitoring of the complexity of post-vaccine immune response.

2021 ◽  
Vol 22 (2) ◽  
pp. 912
Author(s):  
Nabila Seddiki ◽  
John Zaunders ◽  
Chan Phetsouphanh ◽  
Vedran Brezar ◽  
Yin Xu ◽  
...  

HIV-1 infection rapidly leads to a loss of the proliferative response of memory CD4+ T lymphocytes, when cultured with recall antigens. We report here that CD73 expression defines a subset of resting memory CD4+ T cells in peripheral blood, which highly express the α-chain of the IL-7 receptor (CD127), but not CD38 or Ki-67, yet are highly proliferative in response to mitogen and recall antigens, and to IL-7, in vitro. These cells also preferentially express CCR5 and produce IL-2. We reasoned that CD73+ memory CD4+ T cells decrease very early in HIV-1 infection. Indeed, CD73+ memory CD4+ T cells comprised a median of 7.5% (interquartile range: 4.5–10.4%) of CD4+ T cells in peripheral blood from healthy adults, but were decreased in primary HIV-1 infection to a median of 3.7% (IQR: 2.6–6.4%; p = 0.002); and in chronic HIV-1 infection to 1.9% (IQR: 1.1–3%; p < 0.0001), and were not restored by antiretroviral therapy. Moreover, we found that a significant proportion of CD73+ memory CD4+ T cells were skewed to a gut-homing phenotype, expressing integrins α4 and β7, CXCR3, CCR6, CD161 and CD26. Accordingly, 20% of CD4+ T cells present in gut biopsies were CD73+. In HIV+ subjects, purified CD73+ resting memory CD4+ T cells in PBMC were infected with HIV-1 DNA, determined by real-time PCR, to the same level as for purified CD73-negative CD4+ T cells, both in untreated and treated subjects. Therefore, the proliferative CD73+ subset of memory CD4+ T cells is disproportionately reduced in HIV-1 infection, but, unexpectedly, their IL-7 dependent long-term resting phenotype suggests that residual infected cells in this subset may contribute significantly to the very long-lived HIV proviral DNA reservoir in treated subjects.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Yasmina Serroukh ◽  
Chunyan Gu-Trantien ◽  
Baharak Hooshiar Kashani ◽  
Matthieu Defrance ◽  
Thien-Phong Vu Manh ◽  
...  

Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer.


2021 ◽  
Vol 22 (12) ◽  
pp. 6573
Author(s):  
Ewa Fuc ◽  
Dagmara Złotkowska ◽  
Ewa Wasilewska ◽  
Barbara Wróblewska

Chicken meat is often a major component of a modern diet. Allergy to chicken meat is relatively rare and occurs independently or in subjects allergic to ovalbumin (OVA). We examined the effect of adoptive transfer of OVA-CD4+ T cells on the immune response to OVA in mice fed chicken meat. Donor mice were injected intraperitoneally with 100 µg of OVA with Freund’s adjuvant two times over a week, and CD4+ T cells were isolated from them and transferred to naïve mice (CD4+/OVA/ChM group), which were then provoked with OVA with FA and fed freeze-dried chicken meat for 14 days. The mice injected with OVA and fed chicken meat (OVA/ChM group), and sensitized (OVA group) and healthy (PBS group) mice served as controls. Humoral and cellular response to OVA was monitored over the study. The CD4+/OVA/ChM group had lowered levels of anti-OVA IgG and IgA, and total IgE. There were significant differences in CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ T cells between groups. OVA stimulation decreased the splenocyte proliferation index and IFN-γ secretion in the CD4+/OVA/ChM group compared to the OVA group. IL-4 was increased in the OVA/ChM mice, which confirms allergenic potential of the egg–meat protein combination. Transfer of OVA-experienced CD4+ T cells ameliorated the negative immune response to OVA.


Blood ◽  
2017 ◽  
Vol 129 (14) ◽  
pp. 1991-2001 ◽  
Author(s):  
Maria Vono ◽  
Ang Lin ◽  
Anna Norrby-Teglund ◽  
Richard A. Koup ◽  
Frank Liang ◽  
...  

Key Points Neutrophils can present cognate antigens to antigen-specific memory CD4+ T cells. MHC-II and costimulatory molecules are induced on neutrophils in the presence of antigen and antigen-specific memory CD4+ T cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2024-2024
Author(s):  
MD Muharrem Muftuoglu ◽  
Abdullah Alsuliman ◽  
Ahmad Khoder ◽  
Yong-Oon Ahn ◽  
Enli Liu ◽  
...  

Abstract CD4+ T cells are important in the establishment of long-lived pathogen-specific immunity. However, the mechanisms by which antigen specific CD4 T resist insult by lymphocytotoxic agents and are sustained long-term is not well defined. A recent report described the existence of a subset of long-lived CD8+ memory T cells with stem-like properties (Turtle et al, 2009), including the ability to efflux cellular toxins through the ABC–superfamily multidrug efflux protein ABCB1. We hypothesized that a similar subset of T cells with drug-effluxing properties also exists within the CD4+ T cell compartment. We used multiparameter flow cytometry to measure the capacity of CD4+ T cells from donors to efflux the fluorescent substrate Rh123. We identified a subset of memory CD4+ T cells with rapid drug-effluxing ability, defined as CD161+CD95+CD45RA-CD127hiCD28+CD25int that shared remarkable phenotypic similarity to CD8+drug-effluxing memory T cells. The stem cell marker c-kit was preferentially expressed on Rh123 effluxing CD4+CD161+ T cells, whereas CD57, a marker of terminal differentiation, was exclusively expressed on non-effluxing CD4+CD161+ T cells. Rh123 effluxing CD4+CD161+ T cells also displayed differential expression of CD31, CD38, CD58, CD122 and IL-18RA. Rh123 effluxing CD4+ CD161+ T cells were undetectable in cord blood, but found in adult blood, consistent with the emergence of this subset of memory T cells as a consequence of antigen exposure during childhood and adult life. We reasoned that this subset may be enriched within the viral-specific T cell repertoire. Indeed, CMV-specific CD4+ T cells were found to share the same phonotypic markers as Rh123 effluxing CD4+CD161+ T cells. We purified CMV-specific CD4+ T cells using the interferon gamma capture assay (Miltenyi), and showed that CMV-enriched CD4+T cells preferentially and rapidly efflux Rh123. The high ABCB1-mediated drug efflux capacity of CD4+ CD161+ memory cells also facilitated their in vitro resistance to daunorubicin, which was abrogated by competitive inhibitors of ABCB1. In keeping with the in vitro data, we found a significant increase in the frequencies of CMV-specific CD4+ T cells in the peripheral blood of patients with AML after recovery from remission induction chemotherapy, suggesting that CMV-specific CD4+ T cells can preferentially survive and proliferate following chemotherapy. Since interleukin (IL)-7 and IL-15 drive the proliferation of T cells during lymphopenia to restore homeostasis, we assessed the response of CD4+CD161+ T cells to stimulation with CD3/CD28 +IL7 and IL15. Both effluxing and non-effluxing sort-purified central and effector memory CD4+CD161+ T cells proliferated and upregulated Ki67 in vitro. Whereas CD4+CD161+ T cells were able to differentiate into CD4+CD161- T cells, a subset retained CD161 expression. These data suggest that although CD4+CD161+ T cells share phenotypic similarities with terminally differentiated cells, they are able to fully proliferate, differentiate to CD161-ve cells and self-renew to preserve the pool of memory T cells CD161 is also a hallmark of Th17 cells. We examined the cytokine profile of CD4+CD161+ T cells stimulated with a pool of overlapping MHC class II CMV pp65 peptides. After 6 and 24 hrs of in vitro stimulation we failed to detect significant IL-17 production. Furthermore, by real time qPCR, the Th1 transcription factor Tbet, rather than RORC2 (a Th17 hallmark), was found to be preferentially expressed in CMV enriched CD4+CD161+ T cells, indicating that CMV-specific CD4+CD161+T cells in fact represent a unique subset of Th1 cells, distinct from Th17 cells. Our data delineate novel findings related to a distinct subset of drug-effluxing CD4+CD161+ viral-specific memory T cells. Signaling pathways leading to CD4+CD161+ABCB1+ differentiation, the role of this subset in drug resistance and the presence or absence of “stemness” which may impart this subset with extended longevity are being explored. †Muharrem Muftuoglu and Abdullah Alsuliman contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 201 (12) ◽  
pp. 2023-2033 ◽  
Author(s):  
Karin Loré ◽  
Anna Smed-Sörensen ◽  
Jayanand Vasudevan ◽  
John R. Mascola ◽  
Richard A. Koup

Dendritic cells (DCs) are essential antigen-presenting cells for the induction of T cell immunity against pathogens such as human immunodeficiency virus (HIV)-1. At the same time, HIV-1 replication is strongly enhanced in DC–T cell clusters, potentially undermining this process. We found that immature CD123+ plasmacytoid DCs (PDCs) and CD11c+ myeloid DCs (MDCs) were susceptible to both a CCR5- and a CXCR4-using HIV-1 isolate in vitro and were able to efficiently transfer that infection to autologous CD4+ T cells. Soon after HIV-1 exposure, both PDCs and MDCs were able to transfer the virus to T cells in the absence of a productive infection. However, once a productive infection was established in the DCs, newly synthesized virus was predominantly spread to T cells. HIV-1 exposure of the MDCs and PDCs did not inhibit their ability to present cytomegalovirus (CMV) antigens and activate CMV-specific memory T cells. As a result, both PDCs and MDCs preferentially transmitted HIV-1 to the responding CMV antigen–specific CD4+ T cells rather than to nonresponding T cells. This suggests that the induction of antigen-specific T cell responses by DCs, a process crucial to immune defense, can lead to preferential HIV-1 infection and the deletion of responding CD4+ T cells.


2019 ◽  
Vol 1 (4) ◽  
pp. 16-20 ◽  
Author(s):  
A. V. Lugovaya ◽  
N. M. Kalinina ◽  
V. Ph. Mitreikin ◽  
Yu. P. Kovaltchuk ◽  
A. V. Artyomova ◽  
...  

Apoptosis, along with proliferation, is a form of lymphocyte response to activating stimuli. In the early stages of cell differentiation, the apoptotic response prevails and it results to the formation of tolerance to inductor antigen. Mature lymphocytes proliferate in response to stimulation and it means the initial stage in the development of the immune response. Since in this case apoptosis and proliferation acts as alternative processes, their ratio can serve as a measure of the effectiveness of the cellular response to activating signals. The resistance of autoreactive T-cells to apoptosis is the main key point in the development of type 1 diabetes mellitus (T1DM). Autoreactive T-cells migrates from the bloodstream to the islet tissue of the pancreas and take an active part in b cells destruction. The resistance of autoreactive effector T-cells to apoptosis may suggest their high proliferative potential. Therefore, the comparative evaluation of apoptosis and proliferation of peripheral blood lymphocytes can give a more complete picture of their functional state and thus will help to reveal the causes of ineffective peripheral blood T-ceiis apoptosis in patients with T1DM and will help to understand more deeply the pathogenesis of the disease. in this article, the features of proliferative response of peripheral blood T-cells in patients with T1DM and in individuals with high risk of developing T1DM have been studied. Apoptosis of T-cell subpopulations has been investigated. The correlation between the apoptotic markers and the intensity of spontaneous and activation- induced in vitro T-cells proliferation of was revealed. it was determined, that autoreactive peripheral blood T-cells were resistant to apoptosis and demonstrated the increased proliferative potential in patients with T1DM and in individuals with high risk of developing T1DM.


Sign in / Sign up

Export Citation Format

Share Document