scholarly journals Panacea for Gynaecological Cancers: pH-Sensitive Nanomedicine

2020 ◽  
Vol 4 (1) ◽  

Emergence of various nanoscale drug carrier platforms as Drug Delivery Systems (DDS) has revolutionized the field of medicine. Nonetheless, the side-effects due to non-specific distribution of anticancer therapeutics in normal, healthy tissues remains to be a prime pitfall in curing cancers. Therefore, to achieve a better therapeutic efficacy, the use of a target-specific delivery, combined with a stimuli-responsive nanocarrier system, particularly pH-sensitive nanosystems offer an attractive strategy. Targeted drug delivery through pH-sensitive nanosystems offer the potential to enhance the therapeutic index of anticancer agents, either by increasing the drug concentration in tumor cells and/or by decreasing the exposure in normal host tissues. Therefore, nanoscale-based drug delivery through pH-sensitive nanosystems seem to be a boon for treating gynaecological cancers (as well as other cancers) without side-effects or with least harm to normal healthy tissues.

2020 ◽  
Vol 2 (2) ◽  
pp. 35-50
Author(s):  
Pramod Vishwanath Prasad ◽  
Kakali Purkayastha ◽  
Utkarsh Sharma ◽  
Mayadhar Barik

Emergence of various nanoscale drug carrier platforms as Drug Delivery Systems (DDS) has revolutionized the field of medicine.Nonetheless, theside-effects due to non-specific distribution of anticancer therapeutics in normal, healthy tissues remain to be a prime pitfall in curing cancers. Therefore, to achieve a better therapeutic efficacy, the use of a target-specific delivery, combined with a stimuli-responsive nanocarrier system, particularly pH-sensitive nanosystems offer an attractive strategy. Targeted drug delivery through pH-sensitive nanosystems offer the potential to enhance the therapeutic index of anticancer agents, either by increasing the drug concentration in tumor cells and/or by decreasing the exposure in normal host tissues. Therefore, nanoscale-based drug delivery through pH-sensitive nanosystems seem to be a boon for treating gynaecological cancers (as well as other cancers) without side-effects or with least harm to normal healthy tissues.


2020 ◽  
Vol 4 (1) ◽  
pp. 01-10
Author(s):  
Pramod Prasad

Emergence of various Nano scale drug carrier platforms as Drug Delivery Systems (DDS) has revolutionized the field of medicine. Nonetheless, the side-effects due to non-specific distribution of anticancer therapeutics in normal, healthy tissues remain to be a prime pitfall in curing cancers. Therefore, to achieve a better therapeutic efficacy, the use of a target-specific delivery, combined with a stimuli-responsive Nano carrier system, particularly pH-sensitive Nano systems offer an attractive strategy. Targeted drug delivery through pH-sensitive Nano systems offer the potential to enhance the therapeutic index of anticancer agents, either by increasing the drug concentration in tumour cells and/or by decreasing the exposure in normal host tissues. Therefore, Nano scale-based drug delivery through pH-sensitive Nano systems seem to be a boon for treating gynaecological cancers (as well as other cancers) without side-effects or with least harm to normal healthy tissues.


2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


2016 ◽  
Vol 8 (34) ◽  
pp. 22442-22450 ◽  
Author(s):  
Xiaoli Cai ◽  
Yanan Luo ◽  
Weiying Zhang ◽  
Dan Du ◽  
Yuehe Lin

2010 ◽  
Vol 122 (26) ◽  
pp. 4507-4510 ◽  
Author(s):  
Eunju Kim ◽  
Dongwoo Kim ◽  
Hyuntae Jung ◽  
Jiyeong Lee ◽  
Somak Paul ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1151
Author(s):  
Lu Tang ◽  
Jing Li ◽  
Qingqing Zhao ◽  
Ting Pan ◽  
Hui Zhong ◽  
...  

The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.


Sign in / Sign up

Export Citation Format

Share Document