scholarly journals Congenital Hyperinsulinism Due to a Novel Activating Glucokinase Mutation: A Case Report and Literature Review

2020 ◽  
Vol 5 (6) ◽  

Background: Congenital Hyperinsulinism (CHI) constitutes a major cause of persistent and recurrent hypoglycemia, especially in the neonatal period, showing notable phenotypical heterogeneity among affected subjects. Activating mutations of the Glucokinase gene (GCK) are responsible for mild forms of hypoglycemia, due to CHI, usually easily medically managed. Case report: We present a patient at the age of 3.5 years old investigated for persistent hypoglycemia. Laboratory evaluation showed hyperinsulinism during the hypoglycemic episode with a required glucose infusion rate greater than 8-10 mg/kg/min to maintain normoglycemia. Targeted gene panel sequencing revealed an activating missense novel mutation p.Val71Ala in exon 3 of GCK gene, dominantly inherited by his mother. In silico, analysis of this novel missense variant assessed its pathogenicity as being of uncertain significance Conclusions: GCK gene mutations result in varying phenotypic characteristics and responsiveness to diazoxide depending on the type of activating mutation.

2014 ◽  
Vol 99 (4) ◽  
pp. E647-E651 ◽  
Author(s):  
Nikolaos Settas ◽  
Catherine Dacou-Voutetakis ◽  
Maria Karantza ◽  
Christina Kanaka-Gantenbein ◽  
George P. Chrousos ◽  
...  

Context: Central precocious puberty (CPP), defined as the development of secondary sex characteristics prior to age 8 years in girls and 9 years in boys, results from the premature activation of the hypothalamic-pituitary-gonadal axis. Mutations in the imprinted gene MKRN3 have been recently implicated in familial cases of CPP. Objective: The objective of the study was to uncover the genetic cause of CPP in a family with two affected siblings. Design and participants: The entire coding region of the paternally expressed MKRN3 gene was sequenced in two siblings, a girl with CPP and her brother with early puberty, their parents, and their grandparents. Results: A novel heterozygous missense variant in the MKRN3 gene (p.C340G) was detected in the two affected siblings, their unaffected father, and the paternal grandmother. As expected, the mutated allele followed an imprinted mode of inheritance within the affected family. In silico analysis predicts the mutation as possibly damaging in all five software packages used. Furthermore, structural alignment of the ab initio native and mutant MKRN3 models predicts that the p.C340G mutation leads to significant structural perturbations in the 3-dimensional structure of the C3HC4 really interesting new gene motif of the protein, further emphasizing the functional implications of the novel MKRN3 alteration. Conclusions: We report a novel MKRN3 mutation (p.C340G) in a girl with CPP and her brother with early puberty. MKRN3 alterations should be suspected in all cases with familial CPP or early puberty, especially if male patients are also involved or the precocious puberty trend does not follow the usually observed mother-to-daughter inheritance.


2020 ◽  
pp. 163-175
Author(s):  
Laura Cifuentes-C ◽  
Ana Lucia Rivera-Herrera ◽  
Guillermo Barreto

Introduction: Breast cancer is the most common neoplasia of women from all over the world especially women from Colombia. 5%­10% of all cases are caused by hereditary factors, 25% of those cases have mutations in the BRCA1/BRCA2 genes. Objective: The purpose of this study was to identify the mutations associated with the risk of familial breast and/or ovarian cancer in a population of Colombian pacific. Methods: 58 high-risk breast and/or ovarian cancer families and 20 controls were screened for germline mutations in BRCA1 and BRCA2, by Single Strand Conformation Polymorphism (SSCP) and sequencing. Results: Four families (6.9%) were found to carry BRCA1 mutations and eight families (13.8%) had mutations in BRCA2. In BRCA1, we found three Variants of Uncertain Significance (VUS), of which we concluded, using in silico tools, that c.81­12C>G and c.3119G>A (p.Ser1040Asn) are probably deleterious, and c.3083G>A (p.Arg1028His) is probably neutral. In BRCA2, we found three variants of uncertain significance: two were previously described and one novel mutation. Using in silico analysis, we concluded that c.865A>G (p.Asn289Asp) and c.6427T>C (p.Ser2143Pro) are probably deleterious and c.125A>G (p.Tyr42Cys) is probably neutral. Only one of them has previously been reported in Colombia. We also identified 13 polymorphisms (4 in BRCA1 and 9 in BRCA2), two of them are associated with a moderate increase in breast cancer risk (BRCA2 c.1114A>C and c.8755­66T>C). Conclusion: According to our results, the Colombian pacific population presents diverse mutational spectrum for BRCA genes that differs from the findings in other regions in the country.


2020 ◽  
Vol 7 (8) ◽  
Author(s):  
Yu Qing Cai ◽  
HangHu Zhang ◽  
Xiang Zhi Wang ◽  
ChengYun Xu ◽  
Yun Qi Chao ◽  
...  

Abstract Major histocompatibility complex (MHC) II deficiency is a rare primary immunodeficiency disorder that is characterized by the deficiency of MHC class II molecules. The disease is caused by transcription factor mutations including class II transactivator (CIITA), regulatory factor X-5 (RFX5), RFX-associated protein (RFXAP), and RFXAP-containing ankyrin repeat (RFXANK), respectively. Mutations in the RFXANK gene account for >70% of all known patients worldwide. Herein, we reported a 10-month-old boy with MHC II deficiency caused by a novel mutation in the RFXANK gene (c.337 + 1G>C). The boy was admitted to the hospital due to pneumonia and diarrhea at 4 months of age. Genetic analysis revealed a novel homozygous mutation in the RFXANK gene, which derived from the c.337 + 1G>C heterozygous mutations in the RFXANK gene of his parents. The boy died 3 months after diagnosis. More than 200 cases have been reported, and a review of the literature revealed different mutation rates of 4 transcription factors in different countries or regions. This is the first case report of MHC II deficiency from East Asia. We also describe all gene mutations that cause MHC II deficiency and the epidemiology of MHC II deficiency with gene mutations in this paper.


2013 ◽  
Vol 32 (6) ◽  
pp. 412-417 ◽  
Author(s):  
Nuran Uzunalic Üstün ◽  
Dilek Dilli ◽  
Ahmet Afsin Kundak ◽  
Nurullah Okumus ◽  
Derya Erdoğan ◽  
...  

2021 ◽  
Vol 10 (5) ◽  
pp. 1142
Author(s):  
Silvia Magno ◽  
Giovanni Ceccarini ◽  
Andrea Barison ◽  
Iacopo Fabiani ◽  
Alessandro Giacomina ◽  
...  

Laminopathies are disorders caused by LMNA gene mutations, which selectively affect different tissues and organ systems, and present with heterogeneous clinical and pathological traits. The molecular mechanisms behind these clinical differences and tissue specificity have not been fully clarified. We herein examine the case of a patient carrying a heterozygous LMNA c.1634G>A (p.R545H) variant with a mild, transient myopathy, who was referred to our center for the suspicion of lipodystrophy. At physical examination, an abnormal distribution of subcutaneous fat was noticed, with fat accumulation in the anterior regions of the neck, resembling the fat distribution pattern of familial partial lipodystrophy type 2 (FPLD2). The R545H missense variant has been found at very low allelic frequency in public databases, and in silico analysis showed that this amino acid substitution is predicted to have a damaging role. Other patients carrying the heterozygous LMNA p.R545H allele have shown a marked clinical heterogeneity in terms of phenotypic body fat distribution and severity of organ system involvement. These findings indicate that the LMNA p.R545H heterozygous variant exhibits incomplete penetrance and highly variable expressivity. We hypothesized that additional genetic factors, epigenetic mechanisms, or environmental triggers might explain the variable expressivity of phenotypes among various patients.


2019 ◽  
Author(s):  
Nikitas S Skarakis ◽  
Christina Kanaka-Gantenbein ◽  
Dimitra Dimopoulou ◽  
Amalia Sertedaki ◽  
Feneli Karachaliou

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Adrian Giucă ◽  
Cristina Mitu ◽  
Bogdan Ovidiu Popescu ◽  
Alexandra Eugenia Bastian ◽  
Răzvan Capşa ◽  
...  

Abstract Background Hypertrophic cardiomyopathy (HCM) is a genetic disorder mostly caused by sarcomeric gene mutations, but almost 10% of cases are attributed to inherited metabolic and neuromuscular disorders. First described in 2008 in an American-Italian family with scapuloperoneal myopathy, FHL1 gene encodes four-and-a-half LIM domains 1 proteins which are involved in sarcomere formation, assembly and biomechanical stress sensing both in cardiac and skeletal muscle, and its mutations are responsible for a large spectrum of neuromuscular disorders (mostly myopathies) and cardiac disease, represented by HCM, either isolated, or in conjunction with neurologic and skeletal muscle impairment. We thereby report a novel mutation variant in FHL1 structure, associated with HCM and type 6 Emery-Dreifuss muscular dystrophy (EDMD). Case presentation We describe the case of a 40 year old male patient, who was referred to our department for evaluation in the setting of NYHA II heart failure symptoms and was found to have HCM. The elevated muscular enzymes raised the suspicion of a neuromuscular disease. Rigid low spine and wasting of deltoidus, supraspinatus, infraspinatus and calf muscles were described by the neurological examination. Electromyography and muscle biopsy found evidence of chronic myopathy. Diagnosis work-up was completed by next-generation sequencing genetic testing which found a likely pathogenic mutation in the FHL1 gene (c.157-1G > A, hemizygous) involved in the development of X-linked EDMD type 6. Conclusion This case report highlights the importance of multimodality diagnostic approach in a patient with a neuromuscular disorder and associated hypertrophic cardiomyopathy by identifying a novel mutation variant in FHL1 gene. Raising awareness of non-sarcomeric gene mutations which can lead to HCM is fundamental, because of diagnostic and clinical risk stratification challenges.


Nephron ◽  
2021 ◽  
pp. 1-6
Author(s):  
Linlin Huang ◽  
Ting Shi ◽  
Ying Li ◽  
Xiaozhong Li

This is a case report of a girl with glutaric acidemia type I (GA-I) who experienced rhabdomyolysis and acute kidney injury (AKI). Her first acute metabolic crisis occurred at the age of 5 months, which mainly manifested as irritable crying, poor appetite, and hyperlactatemia. Mutation analysis showed 2 pathogenic mutations in the glutaryl-CoA dehydrogenase (GCDH) gene, which were c.383G>A (p.R128Q) and c.873delC (p.N291Kfs*41), the latter of which is a novel frameshift mutation of GA-I. She had a febrile illness at the age of 12 months, followed by AKI and severe rhabdomyolysis. Four days of continuous venovenous hemodiafiltration (CVVHDF) helped to overcome this acute decompensation. This case report describes a novel mutation in the GCDH gene, that is, c.873delC (p.N291Kfs*41). Also, it highlights the fact that patients with GA-I have a high risk of rhabdomyolysis and AKI, which may be induced by febrile diseases and hyperosmotic dehydration; CVVHDF can help to overcome this acute decompensation.


2021 ◽  
pp. bjophthalmol-2020-318204
Author(s):  
Zohra Chibani ◽  
Imen Zone Abid ◽  
Peter Söderkvist ◽  
Jamel Feki ◽  
Mounira Hmani Aifa

BackgroundAutosomal recessive congenital hereditary corneal dystrophy (CHED) is a rare isolated developmental anomaly of the eye characterised by diffuse bilateral corneal clouding that may lead to visual impairment requiring corneal transplantation. CHED is known to be caused by mutations in the solute carrier family 4 member 11 (SLC4A11) gene which encodes a membrane transporter protein (sodium bicarbonate transporter-like solute carrier family 4 member 11).MethodsTo identify SLC4A11 gene mutations associated with CHED (OMIM: #217700), genomic DNA was extracted from whole blood and sequenced for all exons and intron-exon boundaries in two large Tunisian families.ResultsA novel deletion SLC4A11 mutation (p. Leu479del; c.1434_1436del) is responsible for CHED in both analysed families. This non-frameshift mutation was found in a homozygous state in affected members and heterozygous in non-affected members. In silico analysis largely support the pathogenicity of this alteration that may leads to stromal oedema by disrupting the osmolarity balance. Being localised to a region of alpha-helical secondary structure, Leu479 deletion may induce protein-compromising structural rearrangements.ConclusionTo the best of our knowledge, this is the first clinical and genetic study exploring CHED in Tunisia. The present work also expands the list of pathogenic genotypes in SLC4A11 gene and its associated clinical diagnosis giving more insights into genotype–phenotype correlations.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Mario Tumminello ◽  
Antonella Gangemi ◽  
Federico Matina ◽  
Melania Guardino ◽  
Bianca Lea Giuffrè ◽  
...  

Abstract Background Hypohidrotic Ectodermal Dysplasia (HED) is a genetic disorder which affects structures of ectodermal origin. X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common form of disease. XLHED is characterized by hypotrichosis, hypohydrosis and hypodontia. The cardinal features of classic HED become obvious during childhood. Identification of a hemizygous EDA pathogenic variant in an affected male confirms the diagnosis. Case presentation We report on a male newborn with the main clinical characteristics of the X-linked HED including hypotrichosis, hypodontia and hypohidrosis. Gene panel sequencing identified a new hemizygous missense variant of uncertain significance (VUS) c.1142G > C (p.Gly381Ala) in the EDA gene, located on the X chromosome and inherited from the healthy mother. Conclusion Despite the potential functional impact of VUS remains uncharacterized, our goal is to evaluate the clinical potential consequences of missense VUS on EDA gene. Even if the proband’s phenotype is characteristic for classic HED, further reports of patients with same clinical phenotype and the same genomic variant are needed to consider this novel VUS as responsible for the development of HED.


Sign in / Sign up

Export Citation Format

Share Document