scholarly journals Design and Analysis of Shunt Configuration-Based RF MEMS Switch

In this paper a shunt type RF MEMS switch design and analysis for tunable applications is presented. Switch works based on the electrostatic actuation principle. Theoretical calculated Switch parameters are compared with the electromechanical and electromagnetic simulation results. The effect of various materials like conductor and dielectrics & parameters like airgap, beam width on the electromechanical parameters of the switch is analyzed to get low pull-in voltage, high switching speed, better capacitance ratio, return loss, insertion loss, and isolation loss. The switch up and down state capacitance are 40.9fF and 4.45pF respectively. Down to up state capacitance ratio of this switch is 108.69. The designed switch has an actuation voltage of 32V. RF performance is simulated from 1-10GHz. In ON state switch has return loss of -35dB, insertion loss of -0.1dB. In the OFF-state switch has return loss of -1dB and an isolation loss of -11dB.

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Kun Deng ◽  
Fuxing Yang ◽  
Yucheng Wang ◽  
Chengqi Lai ◽  
Ke Han

In this paper a high capacitance ratio and low actuation voltage RF MEMS switch is designed and fabricated for Ka band RF front-ends application. The metal-insulator-metal (MIM) capacitors is employed on a signal line to improve the capacitance ratio, which will not degrade the switch reliability. To reduce the actuation voltage, a low spring constant bending folding beam and bilateral drop-down electrodes are designed in the MEMS switch. The paper analyzes the switch pull-in model and deduces the elastic coefficient calculation equation, which is consistent with the simulation results. The measured results indicated that, for the proposed MEMS switch with a gap of 2 μm, the insertion loss is better than −0.5 dB and the isolation is more than −20 dB from 25 to 35 GHz with an actuation voltage of 15.8 V. From the fitted results, the up-state capacitance is 6.5 fF, down-state capacitance is 4.3 pF, and capacitance ratios is 162. Compared with traditional MEMS capacitive switches with dielectric material Si3N4, the proposed MEMS switch exhibits high on/off capacitance ratios of 162 and low actuation voltage.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 34
Author(s):  
K Vikas ◽  
S Sunithamani ◽  
M Yagnika ◽  
S Siva Krishna ◽  
S Avanthi

In this paper we have designed and analyzed shunt capacitive fixed-fixed RF MEMS switch to maintain low actuation voltage. The pull - in voltage of the proposed switch is 7.7V for 2 um air gap. The electromagnetic analysis for the designed structure is, return loss is -23dB in the range of 1-40 GHz, insertion loss is -0.04dB at a frequency range of 1-40 GHz and isolation is - 38.5dB obtained at a frequency of 23.5 GHz. Mechanical analysis for the designed structure is also performed using FEM tool.


2020 ◽  
Vol 12 ◽  
Author(s):  
Pampa Debnath ◽  
Ujjwal Mondal ◽  
Arpan Deyasi

Aim:: Computation of loss factors for one-bit RF MEMS switch over Ku, K and Ka-band for two different insulating substrates. Objective:: Numerical investigation of return loss, insertion loss, isolation loss are computed under both actuated and unactuated states for two different insulating substrates of the 1-bit RF MEMS switch, and corresponding up and down-capacitances are obtained. Methods:: The unique characteristics of a 1-bit RF MEMS switch of providing higher return loss under both actuated and unactuated states and also of isolation loss with negligible insertion loss makes it as a prime candidate for phase shifter application. This is presented in this manuscript with a keen focus on improvement capability by changing transmission line width, and also of overlap area; where dielectric constant of the substrate also plays a vital role. Results:: The present work exhibits very low down-capacitance over the spectrum whereas considerable amount of up-capacitance. Also when overall performance in terms of all loss parameters are considered, switch provides very low insertion loss, good return loss under actuated state and standard isolation loss. Conclusion:: Reduction of transmission line width of about 33% improved the performance of the switch by increasing isolation loss. Isolation loss of -40 dB is obtained at actuated condition in higher microwave spectra for SiO 2 at higher overlap area. Down capacitance of ~ 1dB is obtained which is novel as compared with other published literature. Moreover, a better combination of both return loss, isolation loss and insertion loss are reported in this present work compared with all other published data so far.


The present paper aimed at designing, optimizing, and simulating the RF MEMS Switch which is stimulated electrostatically. The design of the switch is located on the CoplanarWaveguide (CPW) transmission line. The pull-in voltage of the switch was 2V and the axial residual stress of the proposed design was obtained at 23MPa. In order to design and optimize the geometric structure of the switch, the desired model was extracted based on the objective functions of the actuation voltage and the return loss up-state and also the isolation down-state using the mathematical programming. Moreover, the model was solved by the NSGA-II meta-heuristic algorithm in MATLAB software. In addition, the design requirements and the appropriate levels for designing the switch were obtained by presenting the Pareto front from the beam actuation voltage and also the return loss up-state and isolation down-state. Finally, the RF parameters of the switch were calculated as S11=-2.54dB and S21=-33.18dB at the working frequency of 40GHz by extracting the appropriate parameters of the switch design through simulating a switch designed by the COMSOL Multiphysics software 4.4a and the advanced design system (ADS).


2018 ◽  
Vol 32 (30) ◽  
pp. 1850362
Author(s):  
Lei Han ◽  
Shen Xiao

In this paper, design, fabrication and measurements of a novel single-pole-double-throw three-state RF MEMS switch based on silicon substrate are presented. The RF MEMS switch consists of two UV-shaped beam push–pull thermal actuators which have three states of ON, OFF and Deep-OFF by using current actuation. When the switch is at Deep-OFF state, it can provide a higher isolation. The switch is fabricated by MetalMUMPs process. The measurement results show that, to the proposed single-pole-double-throw RF MEMS switch, when Switch I is at the ON state and Switch II is at the OFF state, the return loss is better than −16 dB, the insertion loss of Port1 and Port2 is less than −0.9 dB and the isolation of Port3 and Port1 is better than −22 dB at the frequency range from 8 GHz to 12 GHz. When Switch I is at the ON state and the actuator of Switch II is pulled back, which is called the Deep-OFF state, the return loss of Port1 is better than −15.5 dB, the insertion loss of Port1 and Port2 is better than −0.8 dB, and the isolation of Port3 and Port1 is better than −23.5 dB can be achieved at the frequency range from 8 GHz to 12 GHz.


Author(s):  
Bokkisam Venkata Sai Sailaja ◽  
Ketavath Kumar Naik

Abstract In this paper, non-uniform meandered line shunt capacitive RF-MEMS switch is presented at an elliptical patch etched with a split-ring resonator (SRR) for satellite communication applications. The non-uniform meander line shunt capacitive is a fixed-fixed type of RF-MEMS switch that is introduced in this model antenna. The proposed antenna design is resonated at 10.46 GHz with the return loss of −37.6 dB. The performance evolution of the proposed antenna design is evaluated with and without integrated RF-MEMS switch on the proposed antenna SRR. It is observed that the proposed model at the ON-state switch resonates at 10.57 GHz frequency with the return loss of −30 dB. Similarly, at the OFF-state switch, it resonates at 10.53 GHz frequency with the return loss of −43 dB. Al3N4 (aluminum nitride) is used for the switch as a dielectric material, hence the switch attains higher isolation. The actuation voltage of 7.9 V is required for the switch to actuate from ON to OFF state. The switch attains minimum insertion and return loss which is discussed in further sections. The proposed antenna is fabricated and tested by a vector network analyzer; there is a good agreement between the simulated and measured results.


2011 ◽  
Vol 483 ◽  
pp. 457-460
Author(s):  
Guo Ping Du ◽  
Jian Zhu ◽  
Yuan Wei Yu ◽  
Shi Xing Jia ◽  
Li Li Jiang

In this paper, a novel RF MEMS switch driven by combs with low insertion loss is presented. The developed SPST RF MEMS switch with a lateral resistive contact and gold structure layer on a silicon substrate has been fabricated by surface micromachining process. The RF performance of the switch indicates an insertion loss below 0.30 dB at 20 GHz, a return loss better than 20 dB and isolation greater than 30 dB. Good RF characteristics have been achieved by the large contact area and a lateral Au-to-Au resistive contact.


2014 ◽  
Vol 981 ◽  
pp. 564-567 ◽  
Author(s):  
Rui Wu ◽  
Ming Xin Song

This paper presents the calculation model of capacitive RF-MEMS switch for the isolation and insertion loss, and then adopts CST software to simulate microwave performances. The simulation results show that return loss can reach-21.5dB and isolation can reach-0.26dB when the distance between contacting metal and dielectric layer adopts 2ڌ̏̽, 6×?103ڌ̏̽2 of contacting area and 20ڌ̏̽ of groove depth.


Sign in / Sign up

Export Citation Format

Share Document