scholarly journals IN SILICO SEARCH FOR POTENTIAL INHIBITORS OF DENGUE VIRUS REPRODUCTION AMONG DERIVATIVES OF THE ALKALOID (-)-CYTISINE

Author(s):  
D. O. Tsypyshev ◽  
A. V. Koval’skaya ◽  
I. P. Tsypysheva
2019 ◽  
Vol 70 (9) ◽  
pp. 3387-3391
Author(s):  
Gabriela Tataringa ◽  
Balasubramanian Sathyamurthy ◽  
Ion Sandu ◽  
Ana Maria Zbancioc

In this study, the binding efficiency of 10 coumarin derivatives with some selected proteins from Dengue virus through in silico method was done. By virtual screening and docking results, we have found that the hybrid derivative between coumarin and isatin has the most convenient binding activity for the seven selected proteins.


2017 ◽  
Vol 10 (11) ◽  
pp. 3957
Author(s):  
Pavlo V. Zadorozhnii ◽  
Vadym V. Kiselev ◽  
Nataliia O. Teslenko ◽  
Aleksandr V. Kharchenko ◽  
Ihor O. Pokotylo ◽  
...  

2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1257
Author(s):  
Fareena Shahid ◽  
Noreen ◽  
Roshan Ali ◽  
Syed Lal Badshah ◽  
Syed Babar Jamal ◽  
...  

Hepatitis C is affecting millions of people around the globe annually, which leads to death in very high numbers. After many years of research, hepatitis C virus (HCV) remains a serious threat to the human population and needs proper management. The in silico approach in the drug discovery process is an efficient method in identifying inhibitors for various diseases. In our study, the interaction between Epigallocatechin-3-gallate, a component of green tea, and envelope glycoprotein E2 of HCV is evaluated. Epigallocatechin-3-gallate is the most promising polyphenol approved through cell culture analysis that can inhibit the entry of HCV. Therefore, various in silico techniques have been employed to find out other potential inhibitors that can behave as EGCG. Thus, the homology modelling of E2 protein was performed. The potential lead molecules were predicted using ligand-based as well as structure-based virtual screening methods. The compounds obtained were then screened through PyRx. The drugs obtained were ranked based on their binding affinities. Furthermore, the docking of the topmost drugs was performed by AutoDock Vina, while its 2D interactions were plotted in LigPlot+. The lead compound mms02387687 (2-[[5-[(4-ethylphenoxy) methyl]-4-prop-2-enyl-1,2,4-triazol-3-yl] sulfanyl]-N-[3(trifluoromethyl) phenyl] acetamide) was ranked on top, and we believe it can serve as a drug against HCV in the future, owing to experimental validation.


2021 ◽  
Author(s):  
Samuel Ndaghiya Adawara ◽  
Gideon Adamu Shallangwa ◽  
Paul Andrew Mamza ◽  
Abdulkadir Ibrahim

Author(s):  
Azza H. Harisna ◽  
Rizky Nurdiansyah ◽  
Putri H. Syaifie ◽  
Dwi W. Nugroho ◽  
Kurniawan E. Saputro ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2600
Author(s):  
Fábio G. Martins ◽  
André Melo ◽  
Sérgio F. Sousa

Biofilms are aggregates of microorganisms anchored to a surface and embedded in a self-produced matrix of extracellular polymeric substances and have been associated with 80% of all bacterial infections in humans. Because bacteria in biofilms are less amenable to antibiotic treatment, biofilms have been associated with developing antibiotic resistance, a problem that urges developing new therapeutic options and approaches. Interfering with quorum-sensing (QS), an important process of cell-to-cell communication by bacteria in biofilms is a promising strategy to inhibit biofilm formation and development. Here we describe and apply an in silico computational protocol for identifying novel potential inhibitors of quorum-sensing, using CviR—the quorum-sensing receptor from Chromobacterium violaceum—as a model target. This in silico approach combines protein-ligand docking (with 7 different docking programs/scoring functions), receptor-based virtual screening, molecular dynamic simulations, and free energy calculations. Particular emphasis was dedicated to optimizing the discrimination ability between active/inactive molecules in virtual screening tests using a target-specific training set. Overall, the optimized protocol was used to evaluate 66,461 molecules, including those on the ZINC/FDA-Approved database and to the Mu.Ta.Lig Virtual Chemotheca. Multiple promising compounds were identified, yielding good prospects for future experimental validation and for drug repurposing towards QS inhibition.


Sign in / Sign up

Export Citation Format

Share Document