scholarly journals Prevention of the anti-factor VIII memory B-cell response by inhibition of Bruton tyrosine kinase in experimental hemophilia A

Haematologica ◽  
2018 ◽  
Vol 104 (5) ◽  
pp. 1046-1054 ◽  
Author(s):  
Sandrine Delignat ◽  
Jules Russick ◽  
Bagirath Gangadharan ◽  
Julie Rayes ◽  
Mathieu Ing ◽  
...  
Author(s):  
Jenna J. Guthmiller ◽  
Olivia Stovicek ◽  
Jiaolong Wang ◽  
Siriruk Changrob ◽  
Lei Li ◽  
...  

ABSTRACTSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity and kinetics of the antibody response mounted against this novel virus are not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and non-structural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike.


2020 ◽  
Vol 99 (8) ◽  
pp. 1895-1906
Author(s):  
Julia Winkler ◽  
Hannes Tittlbach ◽  
Andrea Schneider ◽  
Corinna Buchstaller ◽  
Andreas Mayr ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Brenda Westerhuis ◽  
Hinke ten Hulscher ◽  
Ronald Jacobi ◽  
Josine van Beek ◽  
Marion Koopmans ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261656
Author(s):  
Raphael A. Reyes ◽  
Kathleen Clarke ◽  
S. Jake Gonzales ◽  
Angelene M. Cantwell ◽  
Rolando Garza ◽  
...  

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n = 8) or severe (n = 5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet and FcRL5, as compared to individuals who experienced severe disease. While the frequency of T-bet+ spike-specific IgG+ B cells differed between the two groups, these cells predominantly showed an activated switched memory B cell phenotype in both groups. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results highlight subtle differences in the B cells response after non-severe and severe COVID-19 and suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 38-38
Author(s):  
Christina Hausl ◽  
Rafi U. Ahmad ◽  
Maria Sasgary ◽  
Christopher B. Doering ◽  
Pete S. Lollar ◽  
...  

Abstract Inhibitory antibodies against factor VIII (FVIII) are the major complication experienced by hemophilia A patients treated with FVIII products. The most effective therapy to eradicate these antibodies is elevated doses of FVIII over a prolonged period. Despite clinical practice in using such protocols, nothing is known about the immunological mechanisms that cause the down-modulation of FVIII-specific immune responses and the induction of long-lasting immune tolerance against FVIII. Understanding the underlying mechanisms, however, would facilitate designing new therapeutic strategies. The re-stimulation of FVIII-specific memory responses after each dose of FVIII is probably the most important event in the maintenance of FVIII inhibitors in patients. Therefore, the eradication of these memory responses should be an essential step in the down-modulation of inhibitory antibodies and the induction of immune tolerance. We used a murine model of hemophilia A to answer the question whether FVIII-specific memory responses are sensitive to increasing doses of FVIII. In particular, we were interested in the differential effects of FVIII on memory-B-cell and memory-T-cell responses. For the analysis of FVIII-specific memory responses, we re-stimulated FVIII-specific memory B- and T-cells obtained from spleens of hemophilic mice treated with four doses of human FVIII or eight doses of murine FVIII as described (Sasgary et al.: Thromb Haemost2002; 87:266–72; Hausl et al.: Blood2004; 104:115–22). Our results show dose-dependent effects of FVIII on the re-stimulation of FVIII-specific memory B cells in vitro. Physiological concentrations of FVIII below 100 ng/ml re-stimulate memory B cells and induce their differentiation into anti-FVIII antibody-secreting plasma cells. Supra-physiological concentrations above 100 ng/ml, however, inhibit memory-B-cell re-stimulation. The inhibition of memory-B-cell re-stimulation is irreversible and seems to be due to an induction of apoptosis that is at least partly mediated by Fas-dependent mechanisms. Furthermore, the inhibition appears to be initiated by triggering the B-cell receptor (BCR) without the requirement of an excessive cross-linking of the BCR. The activation of FVIII-specific T cells is not affected by increasing doses of FVIII. We conclude that the induction of apoptosis in FVIII-specific memory B cells might be the first step in the induction of immune tolerance in hemophilia A patients with FVIII inhibitors who receive high doses of FVIII. The eradication of memory B cells would prevent their differentiation into antibody-secreting plasma cells and, moreover, might lead to a deficiency of effective antigen-presenting cells required for the re-stimulation of FVIII-specific memory T cells. The induction of regulatory T cells rather than effector T cells could be the consequence of this deficiency.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 204-204 ◽  
Author(s):  
Sonja Werwitzke ◽  
Marcus von Hornung ◽  
Katy Kalippke ◽  
Arne Trummer ◽  
Arnold Ganser ◽  
...  

Abstract Abstract 204 The formation of inhibitory antibodies to factor VIII (FVIII) is the foremost complication of replacement therapy in hemophilia A. Patients with inhibitors are treated with very high doses of FVIII, over prolonged periods of time, to induce immune tolerance. Studies in a hemophilia A mouse model demonstrated that very high doses of FVIII can induce apoptosis in FVIII-specific memory B cells and prevent their differentiation into antibody-secreting cells. The Fc gamma receptor IIb (FcgRIIb) is expressed on B cells and mediates inhibitory signals after crosslinking with the B cell receptor. Here, we studied the potential role of this receptor in the regulation of memory B cell response to FVIII. FVIII knockout mice (B6;129S4-F8tm2Kaz/J) were crossed with FcgRIIb knockout mice (B6;129S4-Fcgr2btm1Ttk/J). Comparing F8−/− mice and F8−/−/FcgR2b−/− double knockout mice, the initial anti-FVIII antibody formation was similar after intravenous exposure to 4 weekly doses of 80 or 400 IU/kg. Similar numbers of FVIII-specific antibody-secreting cells were detected in the spleen and bone marrow by ELISPOT. As previously shown, in vitro re-stimulation of memory B cells from spleens of immunized F8−/− mice at doses of 1 to 200 ng/ml induced their differentiation into antibody-secreting cells. Higher doses of 400 to 800 ng/ml prevented differentiation. In F8−/−/FcgR2b−/− double knockout mice, however, formation of antibody-secreting cells was completely inhibited across all FVIII doses tested. Addition of B220-depleted splenocytes from F8−/− mice did not restore memory B cell function in F8−/−/FcgR2b−/− double knockout mice, indicating that the observed effect was not due to dysfunction of follicular dendritic cells or other antigen-presenting cells. Inhibition of FcgRIIb using a monoclonal antibody prevented the FVIII-specific memory B cell response in splenocytes from immunized F8−/− mice. Staining with propidium iodide, annexin V, or anti-caspase 3 indicated increased rates of apoptosis when FcgRIIb was blocked during re-stimulation. In summary, FcgRIIb plays a crucial role for the differentiation of FVIII-specific splenic memory B cells into antibody-secreting cells. Inhibition of FcgRIIb appears to sensitize B cells for apoptosis during re-stimulation with FVIII. This mechanism could potentially facilitate the eradication of FVIII-specific memory B cells during ITI. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 13 (1) ◽  
pp. e0007057 ◽  
Author(s):  
Brie Falkard ◽  
Richelle C. Charles ◽  
Wilfredo R. Matias ◽  
Leslie M. Mayo-Smith ◽  
J. Gregory Jerome ◽  
...  

2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 69-69
Author(s):  
Claire Baniel ◽  
Jacquelyn A Hank ◽  
Emily I. Guy ◽  
Stephen D Gillies ◽  
Alan J. Korman ◽  
...  

69 Background: In a murine melanoma (MEL) model, we reported an in situ vaccination response to combined radiation (RT) and intra-tumor (IT) injection of anti-GD2 hu14.18-IL2 immunocytokine (IC). This treatment resulted in 71% complete regression of 5-week (~ 200mm3) tumors, a memory T cell response, and augmented response to systemic anti-CTLA-4 antibody (mAb) checkpoint blockade. We hypothesized that mice rendered disease-free (DF) by RT, IT-IC, and anti-CTLA-4 mAb might also exhibit a memory B cell response. Methods: C57BL/6 mice were implanted with 2x106 syngeneic, GD2+ B78 MEL cells and tumors developed for 5 weeks. Mice were treated with 12 Gy RT to this tumor followed by 5 daily IT injections of hu14.18-IL2 d6-10 after RT and IP injection of anti-CTLA-4 d3, 6, and 9 after RT. DF mice and naïve controls were challenged by subcutaneous implantation with 2x106 B78 MEL cells. Peripheral blood was collected from mice before and after B78 challenge and serum was evaluated for presence of tumor-specific mAbs using flow cytometry and ELISA. Results: Seventy-three percent of mice were rendered DF by treatment with RT, IT-hu14.18-IL2, and anti-CTLA-4. All of these (13/13) rejected a rechallange B78 implantation > 1 year later (range d378 – 511), whereas no naïve mice rejected B78 implantation (0/66). IgG from serum of DF mice bound selectively to B78 and parental GD2- B16 MEL cells and the level of this mAb response appeared to increase modestly d14 after B78 challenge. In naïve mice, a modest increase in tumor-specific mAb was identified between non-tumor implanted mice and d35 post-implantation mice (bearing tumors > 200mm3), however this level remained ~ 5 fold below that observed in DF mice prior to B78 rechallenge. In contrast, no appreciable mAb response was observed for unrelated syngeneic GD2+ Panc02 pancreatic tumor cells in serum of DF or naïve mice. Conclusions: We report an endogenous anti-tumor IgG humoral response in DF mice > 1 year after treatment with RT, IT-IC, and anti-CTLA-4 mAb, concurrent with demonstration of long lasting immune protection from re-challenge. Studies are underway to determine whether this response is involved in the therapeutic efficacy of this in situ vaccination regimen.


Sign in / Sign up

Export Citation Format

Share Document