scholarly journals The Effect of Cool Roofs on the Achieving of Energy Conservation with the Administrative Building Spaces

Author(s):  
Duaa Faal Niama ◽  
Ghada Mohammed Kammou

The world has gone beyond the realization that fossil fuels are a depleted energy source, that the earth is going through a global warming phase, and that it is important to find the necessary energy alternatives, with the least environmental impact, and to address energy consumption in the building sector in particular. Passive systems and their use, or combined with effective systems. due to the dependence of the Iraqi urban environment on the electricitySignificantly and the source of fossil fuel, it is important to find suitable solutions, especially in the summer because of high temperatures and increased drought, by taking advantage of the experiences of countries within this scope, and applied to buildings , Because the roof is the main source of thermal gain inside the buildings it is necessary to take the systems of cool roofs, which is a passive system in the roofing of buildings, contribute to improving the internal environment and achieve the thermal comfort of the occupants, the research problem was:"There is no clear conception of the possibility of applying cool roof systems in the local administrative buildings" and The objective of the research is to" clarify the importance of achieving the concept of conservation of energy and improve thermal performance through the application of cool roof systems in the administrative buildings in the urban environment of Iraq with a hot- dry climate, "and then ensure the research Two aspects,first one:The concept of thermal performance and conservation of energy in administrative buildings and the way of achieving energy conservation using cool roofs, while the practical side included: the handling of several global experiences of sustainable administrative buildings used cool roofs and indicate the impact of this system on the efficiency of thermal performance, The research concluded that it is possible to apply cool roofs in claimte of  Iraq (hot-dry) because the cool roof has the ability to reflect a large amount of solar radiation falling on the surface of the roof, thereby reducing the thermal gain of the building and improve the thermal performance of the administrative building envelope, and as a result achieved Save energy within its spaces

2021 ◽  
Vol 27 (2) ◽  
pp. 126-148
Author(s):  
Duaa Al-Ali ◽  
Ghada M.Ismael Kamoona

The construction sector consumes large amounts of energy during the lifetime of a building. This consumption starts with manufacturing and transferring building materials to the sites and demolishing this building after a long time of occupying it. The topic of energy conservation and finding the solution inside the building spaces become an important and urgent necessity. It is known that the roof is exposed to a high amount of thermal loads compared to other elements in a building envelope, so this needs some solutions and treatments to control the flow of the heat through them. These solutions and treatments may be achieved by using nanomaterials. Recently, nanomaterials have high properties, so that this made them good elements to the strategy of energy conservation in the architectural field. Accordingly, the research problem lay in "the lack of studies that deal with strategies to use nanomaterials in the roof of the building (especially the administrative building) in order to achieve energy conservation within its spaces". Then the research aims to: "Determine the efficient of nanomaterials in the roof to improving the thermal performance and achieving energy conservation in the indoor environment of the buildings in Iraq". This research's theoretical aspect has focused on using nanomaterial and their applications in roof systems. While in the experimental aspect, an administrative application to test a mass of identical administrates building in the design. In this research, simulation of the standard roof with nanomaterial, cool roof, and standard roof systems has been done using the Ecotect program. The results obtained in this research showed that the nanomaterial affected the thermal performance and achieved the indoor environment's quality by reducing to energy-consuming in the administrative building in the hot-dry climate of Iraq.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Y. Anand ◽  
A. Gupta ◽  
A. Maini ◽  
Avi Gupta ◽  
A. Sharma ◽  
...  

The roof and walls in the urban areas contribute to major share in the absorption of solar radiations and also retard the outflow of the absorbed radiation from the building envelope, thereby increasing the global warming by inducing the heat island effect. The impact of using cool roof technologies on the thermal comfort of the office buildings has been estimated. Cool roofs reduce electricity consumption for maintaining the temperature of the air-conditioned buildings in the comfort level and also increase comfort in buildings merely not relying completely on cooling equipment. The cool roofs and cool pavements, however, can mitigate summer urban heat islands by improving indoor air quality and comfort. The thermal analysis of different materials has been carried out to analyze the impact of the rate of heat transfer on the building envelope and the results obtained indicate that different cool roof techniques are beneficial in maintaining the comfort level of the building which purely depends on the ambient temperature conditions.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Arsitektura ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 129
Author(s):  
Sri Yuliani ◽  
Wiwik Setyaningsih

<p class="Abstract"><em>The surface temperature of the building material may release a heat load in the micro-environment. The largest building envelope receives the heat load of solar radiation is the roof. The strategic roof position at the top of the building has the opportunity to radiate heat received into the environment. Heat emissions lead to rising temperatures, so it is necessary to lower the temperature in micro-environment. When the heat of the building is not lowered will lead to an increase in the urban heat island (UHI). The objective of the study was to find the relationship between the thermal performance of the roof of the building and the energy efficiency in the high-rise building, in order to establish efficient thermal comfort. The research method uses experimental way in real model which is in Surakarta City, as humid tropical climate area. The result of the study is a comparison of the heat performance of three roofing materials which would later recommend the criteria of energy efficient roof for high buildings.</em><em></em></p>


Author(s):  
Krishna Kota ◽  
Mohamed M. Awad

In this effort, theoretical modeling was employed to understand the impact of flow bypass on the thermal performance of air cooled heat sinks. Fundamental mass and flow energy conservation equations across a longitudinal fin heat sink configuration and the bypass region were applied and a generic parameter, referred as the Flow Bypass Factor (α), was identified from the theoretical solution that mathematically captures the effect of flow bypass as a quantifiable parameter on the junction-to-ambient thermal resistance of the heat sink. From the results obtained, it was found that, at least in the laminar regime, the impact of flow bypass on performance can be neglected for cases when the bypass gap is typically less than 5% of the fin height, and is almost linear at high relative bypass gaps (i.e., usually for bypass gaps that are more than 10–15% of the fin height). It was also found that the heat sink thermal resistance is more sensitive to small bypass gaps and the effect of flow bypass decreases with increasing bypass gap.


Author(s):  
Yassine Kharbouch ◽  
Mohamed Ameur

Abstract Climate change has become a real challenge in different fields, including the building sector. Understanding and assessing the impact of climate change on building energy performance is still necessary to elaborate new climate-adaptive design measures for future buildings. The building energy consumption for heating and cooling is mainly related to the building envelope thermal performance. In this study, the winter heat loss and summer heat gain indicators are proposed to assess and analyse the potential impact of climate change on opaque building envelope elements for different climate zones in Morocco over the next 40 years. For that purpose, a one-dimensional heat transfer model is used to simulate the heat transfer through the multi-layer structure of the wall/roof. A medium climate change scenario is considered in this study. The results showed that the current average walls and roof summer heat gain is expected to increase of about 19.2–54.3% by the 2060s depending on the climate zone, versus a less important decrease in winter heat loss varies between –10.6 and –20.6%. This paper provides a reliable evaluation of the climate change impact on building envelope thermal performance, which leads to better adjustments in future building envelope designs.


2020 ◽  
Vol 330 ◽  
pp. 01011
Author(s):  
Labouda Ba ◽  
Ikram El Abbassi ◽  
Cheikh S.E Kane ◽  
A-M Darcherif ◽  
Mamoudou Ndongo

Developing countries are facing population growth, which leads, on the one hand, to increased requirements for buildings and, on the other hand, to the depletion of fossil fuels along with exposure, of people living in those areas, to some detrimental consequences of climate change. Because of these factors, we propose approaches to control energy consumption in buildings. In some countries, the architectures adopted are not adequate to the environment and climate, resulting in discomfort in those buildings, in such circumstances, residents resort to the use of energy systems, such as heating, ventilation, and air conditioning, which leads to exorbitant electricity bills. Housing consumes 40% of the world's energy and is responsible for a third of greenhouse gas emissions. Optimizing energy needs in buildings is a solution to overcome these problems. For this purpose, there are solutions such as: the design of the building characterized by its shape and envelope, while using less energy-consuming equipment. For several years, the building materials sector has been developing with a particular focus on bio-source materials, which are generally materials with good thermal performance. In order to highlight the thermal performance of bio-source materials, we will study the case of Typha Australis which is a plant of the Typhaceae family that grows abundantly in an aquatic environment mainly in the Senegal River valley.Recent studies showed that Typha Australis has good thermal insulation properties. In order to determine the impact of Typha Australis on a building, a dynamic thermal simulation was carried out using the Trnsys software according to specific scenarios, the Typha was mixed with other local materials and used as a wall insulation panel, the result of the study shows that this fiber has allowed us to optimize energy consumption in a building. Mixing Typha with other materials (e. g. clay) is a promising solution for energy efficiency in buildings.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2030
Author(s):  
Mansoureh Gholami ◽  
Alberto Barbaresi ◽  
Patrizia Tassinari ◽  
Marco Bovo ◽  
Daniele Torreggiani

In urban areas, a considerable proportion of energy demand is allocated to buildings. Since rooftops constitute one-fourth of all urban surfaces, an increasing amount of attention is paid to achieving the most efficient shapes and component designs compatible with every climate and urban context, for rooftops of varying sizes. In this study, three types of rooftop technologies, namely insulated, green roof, and rooftop greenhouse, are evaluated for energy and thermal performance using computer simulations. Water surface exposure, absorption, and intrusion are the three important factors in the calculation of hygrothermal models that impact energy consumption and building envelope performance; however, a few studies are specifically focused on providing realistic results in multi-dimensional hygrothermal models and the assessment of the impact of moisture in roofing solutions. This paper aims at evaluating the performance of three different roofing technologies through a two-dimensional hygrothermal simulation in software WUFI. To accomplish this, a precise localized microclimate model of a complex urban context on the scale of a neighborhood was employed to evaluate the cooling and heating loads of the buildings, the impact of the water content in the green roof on the thermal behavior of the roof surface, and the feasibility of designing a building with nearly zero cooling needs. A two-story building in the city center of Bologna, Italy is modelled. Simulation results have shown that during the cooling period, the performance of the designed rooftop greenhouse is the most effective by 50% reduction in cooling loads. Besides, the impact of moisture in green roofs has been detected as a negative factor for thermal and energy performance of the building in the Mediterranean climate. The results ultimately highlighted the capability of passively-designed rooftop greenhouses to create a building with nearly zero cooling needs.


Author(s):  
Ameera Jaleel Ahmed ◽  
Saba Jabbar Neima

Human's relationship with the environment is strong and mutually beneficial, with thedevelopment of this relationship, a person develops and increases his awareness. The urban environment isa natural, physical, social and cultural milieu that a human lives in it, and get from him the life Constituents.As well as it is a product of human interaction with it, so the urban environment represents what has animpact on human behavior. It effects on human physiology and psychology then represented the relationshipconceptually, socially, and physically. the Cultural Constituents of the urban environment plays a criticaland essential role in user behavior, because they are part of the project they must be included in making thedesign decision as well as in treatment of urban spaces. on the other side, the comprehensive behavioralstudies are still few in this field, especially those studies that are based on ecological behavioral trend andthrough observing of behavior in the urban environment .The current study seeks to draw out a theoreticalmodel for developing ecological behavior measures, to evaluate the role of Cultural Constituents indetermining patterns and nature of human behavior through the experimental approach. Through theprevious literature has been identified the main research problem is represented ) There is a lack ofknowledge in the distribution of behavioral patterns in urban environments that have a high aestheticquality, also there are few objective measures that can be used as an indicator to evaluate the aestheticquality of the urban environment before its development and presenting urban designs in urban space andspecial organization (.According to the research problem, the goals and hypothesis of the research weredetermined, and an inductive experimental approach was defined theoretical and practical axes, also theresearch samples were identified (ten urban spaces in University of Babylon) were observing during (2018-2019),furthermore survey questionnaire sent to the experts In architecture, urban design and psychologyfield .Finally, the results were analyzed and the research found that aesthetic quality plays an important andmajor role in determining patterns and nature of behavior.


2017 ◽  
Vol 27 (8) ◽  
pp. 1050-1068 ◽  
Author(s):  
Maria Philokyprou ◽  
Aimilios Michael ◽  
Stavroula Thravalou ◽  
Ioannis Ioannou

This paper investigates the overall thermal performance of vernacular buildings in Nicosia, Cyprus and highlights the role of semi-open spaces in improving the thermal comfort of the aforementioned structures. The novelty of the study lies in the fact that it presents, in a comparative way, field measurements carried out in five traditional buildings, discussing at the same time the impact of authentic architectural features, as well as of contemporary interventions, on the bioclimatic function of the original building envelope, taking into account the daily use of the premises under investigation. The research outcomes highlight the positive contribution of semi-open spaces to the thermal comfort of vernacular buildings, especially during the cooling period (summer). Contemporary architectural interventions, such as the conversion of semi-open spaces into closed indoor spaces, as well as the behaviour of occupants, are also found to affect the thermal performance of the traditional building envelope.


Sign in / Sign up

Export Citation Format

Share Document