scholarly journals Thermal performance of biosourced materials on Buildings: The case of Typha Australis

2020 ◽  
Vol 330 ◽  
pp. 01011
Author(s):  
Labouda Ba ◽  
Ikram El Abbassi ◽  
Cheikh S.E Kane ◽  
A-M Darcherif ◽  
Mamoudou Ndongo

Developing countries are facing population growth, which leads, on the one hand, to increased requirements for buildings and, on the other hand, to the depletion of fossil fuels along with exposure, of people living in those areas, to some detrimental consequences of climate change. Because of these factors, we propose approaches to control energy consumption in buildings. In some countries, the architectures adopted are not adequate to the environment and climate, resulting in discomfort in those buildings, in such circumstances, residents resort to the use of energy systems, such as heating, ventilation, and air conditioning, which leads to exorbitant electricity bills. Housing consumes 40% of the world's energy and is responsible for a third of greenhouse gas emissions. Optimizing energy needs in buildings is a solution to overcome these problems. For this purpose, there are solutions such as: the design of the building characterized by its shape and envelope, while using less energy-consuming equipment. For several years, the building materials sector has been developing with a particular focus on bio-source materials, which are generally materials with good thermal performance. In order to highlight the thermal performance of bio-source materials, we will study the case of Typha Australis which is a plant of the Typhaceae family that grows abundantly in an aquatic environment mainly in the Senegal River valley.Recent studies showed that Typha Australis has good thermal insulation properties. In order to determine the impact of Typha Australis on a building, a dynamic thermal simulation was carried out using the Trnsys software according to specific scenarios, the Typha was mixed with other local materials and used as a wall insulation panel, the result of the study shows that this fiber has allowed us to optimize energy consumption in a building. Mixing Typha with other materials (e. g. clay) is a promising solution for energy efficiency in buildings.

Author(s):  
Livio de Santoli

Building sustainability, in term of energy efficiency, low-impact building materials, renewable energy, has experienced significant growth during the past years. In response to the growing dependence on fossil fuels and importations, due in part to the increase of energy consumption in the residential sector (in 2009 46,9 Mtep, 3% more than 2008) and the recent European directives (i.e. EU 2009/28/CE) requiring CO2 emissions cut of up to 13% in 2020, there is interest in promoting energy efficiency and renewable energy technologies, which are suitable for residential applications. In this paper we present an overview on actions related to minimization of buildings energy consumption in Italy. Prevalent line of action is to improve the energy performances of building envelope (Dlgs 192/05) using insulated frames, walls and roofs and replacing heat generators with condensing boilers. In addition to national directives, ONRE Report 2011 (National Observatory on building regulations) shows that 831 Municipalities (10% more than 2010) establish mandatory targets for insulation, photovoltaic solar panels, solar water heaters, heat pumps use, correct buildings orientation, saving of water resource and local materials use. In addiction an efficient energy rating of the buildings could promote the spread of energy efficiency measurement and consequently facilitate their implementation. The new energy rating system should meet international standards, regarding environment and energy aspects, and respect territorial needs.


2020 ◽  
Vol 170 ◽  
pp. 01003
Author(s):  
Labouda Ba ◽  
Ikram EL ABBASSI ◽  
Cheikh S.E Kane ◽  
A-Moumen Darcherif ◽  
Mamoudou Ndongo

Typha Australis is a plant that grows abundantly in fresh water. The proliferation of this plant causes health problems, so several measures have been taken to eradicate this problem such as: cutting the plant, coal production. So this article is about the valorisation of this plant as a bio-based material in order to solve the energy problem in the building. In this study, clay was used as a binder with a given percentage. The mixture of clay and Typha was used as an insulation panel and a comparison was made with a conventional habitat without an insulation panel. A dynamic thermal simulation was performed on TRNSYS to evaluate the influence of the use of this insulation panel on the energy consumption in the building. The results of the comparison showed that the use of this insulation panel, which is a mixture of clay and Typha Australis, reduced the energy requirement by 23%, which is a satisfactory result.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Carlos Morón ◽  
Alfonso García ◽  
Daniel Ferrández ◽  
Víctor Blanco

The present work exposes an alternative system for detecting vibrations generated by impact on concrete and mortar sheets. In order to carry out the tests it is necessary to implement a system of measurement different than the one proposed by the current UNE EN 140-7. This system consists of an amplifier and a striking device that is also able to measure the deformation of the material once the impact has been produced. This system is able to detect variations in transmission of vibration at the same frequency between the various building materials employed, after establishing a relationship between the theoretical predictions and the experimental results. Thus, this system could be used as a vibration detection system and as an alternative method of standardization of materials against their acoustic characteristics.


2016 ◽  
Vol 70 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Milica Mladenovic ◽  
Dragoljub Dakic ◽  
Stevan Nemoda ◽  
Milijana Paprika ◽  
Mirko Komatina ◽  
...  

Harmonization of environmental protection and the growing energy needs of modern society promote the biomass application as a replacement for fossil fuels and a viable option to mitigate the green house gas emissions. For domestic conditions this is particularly important as more than 60% of renewables belongs to biomass. Beside numerous benefits of using biomass for energy purposes, there are certain drawbacks, one of which is a possible high emission of NOx during the combustion of these fuels. The paper presents the results of the experiments with multiple biomass types (soybean straw, cornstalk, grain biomass, sunflower oil, glycerin and paper sludge), using different combustion technologies (fluidized bed and cigarette combustion), with emphasis on the emission of NOx in the exhaust gas. A presentation of the experimental installations is given, as well as an evaluation of the effects of the fuel composition, combustion regimes and technology on the NOx emissions. As the biomass combustion took place at temperatures low enough that thermal and prompt NOx can be neglected, the conclusion is the emissions of nitrogen oxides primarily depend on the biomass composition- it is increasing with the increase of the nitrogen content, and decreases with the increase of the char content which provides catalytic surface for NOx reduction by CO.


2021 ◽  
Author(s):  
Hidayat Ullah Shahid

A simplified 1-D numerical model of a window and horizontal Venetian blind assembly has been developed. This model provides a realistic estimate of the advantage of using blinds to control the window heat gain or loss. The free convective heat transfer rate from an isothermal vertical surface adjacent to a set of horizontal louvres has been studied numerically. This configuration is an approximate model of an indoor window glazing with a Venetian-type blind. Knowledge of the effect of blinds on the free convection at the indoor window surface is important for understanding and predicting the impact of shading devices on the overall thermal performance of a window. The convective heat transfer results are used in the one-dimensional model of the complete fenestration system to study the effect on key performance parameters. The results show that louvred blinds can have a significant beneficial effect on window thermal performance.


Morocco has set the goal of introducing new methods of construction and positioning among the leaders in the African continent in the field of renewable energy and sustainable buildings, efforts are therefore focused on developing an energy efficiency policy. Orientation is one of the key factors that impact building’s energy consumption, it’s a very important factor to consider in order to avoid summer overheating and limit winter losses. The purpose of this scientific article is to study the impact of the orientation of a house on its annual energy needs in terms of heating and cooling essentially, but also its internal and solar energy gains and its losses in relation with infiltration, transmission and ventilation. In this regard, simulations were carried out with eight different possible orientations on a small house, located in one geographical area known by its desert climate. The final purpose is to determine the suitable orientation for dwellings in this geographical area for energy saving while guaranteeing the thermal comfort. Based on our analysis, it was revealed that a well-orientated house can save a considerable amount of energy throughout its life cycle.


2018 ◽  
Vol 58 (2) ◽  
pp. 647
Author(s):  
Martin Wilkes

Since the turn of the century, gas has been highlighted as the transition fuel to a lower emissions world, and, in 2011, the International Energy Agency published a special report entitled ‘Are we entering the golden age of gas’, which indicated that gas use could rise by over 50% to provide more than 25% of world energy demand by 2035. Even though gas use has risen in tandem with the increase in renewable energy, over the past decade, coal has been the fastest growing fuel because developing countries choose cheap power to provide their growing energy needs. Gas has been, and continues to be, subject to a green, cheap squeeze; squeezed by cleaner renewables on the one hand, and cheaper coal on the other. This paper will look at the impact that increasing amounts of renewable energy has on existing power generation and supply systems, and provide insights into the potential range of outcomes in emission levels, and the need to not only discuss renewable energy target, but to also understand the total energy mix, and the need to reposition gas from a transition fuel to the natural long-term companion of renewables.


Author(s):  
Sobhy Issam ◽  
Brakez Abderrahim ◽  
Brahim Benhamou

Abstract This paper aims at identifying the impact of three retrofit scenarios of a typical single family house on its energy performance and its indoor thermal comfort in several climates. Two of these scenarios are based on the Moroccan Thermal Regulation in Constructions (RTCM) while the third is the one proposed in this study. The climates, which range from group B to group C of the Köppen climate classification. The results show that the proposed renovation scenario allows reducing the heating load by 19-42% and the cooling load by 29-60% depending on the climate. Furthermore, the RTCM retrofit scenario leads to summer overheating in all climates. One of the main reason of this overheating is the insulation of the slab-on-grade floor as this insulation increases the annual heating/cooling energy needs of the house by 6%-10%. Moreover, the cavity wall technique was found to be the best option for external walls, instead of using high thermal insulting material, in the hot climates. The analysis of the energy performance, the thermal comfort indices and the payback periods for each retrofit scenario shows that the proposed scenario presents the best thermal performance, except for the Cold climate where the RTCM scenario is the most favorable.


2020 ◽  
Vol 2 (2) ◽  
pp. 99-111
Author(s):  
Jidapa Ungwanitban ◽  
Salah ud Din Taj

Renewable energy plays a significant role in mitigating C02 emission and boosts sustainable development. Initially, this study examines those factors which create hurdles in adopting renewable energy technology in Thailand. Later, this study examined the impact of renewable energy with other supporting variables on Thailand's total energy consumption. For this purpose, this study used 38 years of data from 1990 to 2018. Initially, the Augmented Dickey fuller test applied to verify the order of integration on indicators, and it confirms that there exists a unit order of integration. Then applied Johansen Cointegration, and it confirms that there are long-run relationships among trade openness, GDP, energy consumption (fossil fuels), financial development, and renewable energy consumption. Further applied Vector error correction model (VECM) to estimates the coefficients on indicators. Results confirm that openness to trade endorses the consumption of renewable energy in Thailand. However, the development of the economy and traditional energy resources creates hurdles to adapting renewable energy in Thailand. Renewable energy technology in Thailand did not significantly impact financial growth and development. After the research, the researcher advised the government of Thailand to adopt and implement the regulations and policies that maximize the magnitude of renewable energy and maximize the portion of renewable energy in total consumption of the overall energy consumption for the country Thailand.


Sign in / Sign up

Export Citation Format

Share Document