scholarly journals Fluid Flow in Composite Regions Past a Solid Sphere

2021 ◽  
Vol 12 (4) ◽  
pp. 4755-4769

A steady, 2-D, incompressible, viscous fluid flow past a stationary solid sphere of radius 'a' has been considered. The flow of fluid occurs in 3 regions, namely fluid, porous and fluid regions. The governing equations for fluid flow in the clear and porous regions are Stokes and Brinkman equations, respectively. These governing equations are written in terms of stream function in the spherical coordinate system and solved using the similarity transformation method. The variation in flow patterns by means of streamlines has been analyzed for the obtained exact solution. The nature of the streamlines and the corresponding tangential and normal velocity profiles are observed graphically for the different values of porous parameter 'σ'. From the obtained results, it is noticed that an increase in porous parameters suppresses the fluid flow in the porous region due to less permeability; as a result, the fluid moves away from the solid sphere. It also decreases the velocity of the fluid in the porous region due to the suppression of the fluid as 'σ' increases. Hence the parabolic velocity profile is noticed near the solid sphere.

2018 ◽  
Vol 388 ◽  
pp. 344-349
Author(s):  
D.V. Jayalakshmamma ◽  
P.A. Dinesh ◽  
D.V. Chandrashekhar

The numerical study of axi-symmetric, steady flow of an incompressible micropolar fluid past an impervious sphere is presented by assuming uniform flow far away from the sphere. The continuity, linear and angular momentum equations are considered for incompressible micropolar fluid in accordance with Eringen. The governing equations of the physical problem are transformed to ordinary differential equation with variable co-efficient by using similarity transformation method. The obtained differential equation is then solved numerically by assuming the shooting technique. The effect of coupling and coupling stress parameter on the properties of the fluid flow is studied and demonstrated by graphs.


2021 ◽  
Vol 16 ◽  
pp. 74-86
Author(s):  
T. S. L. Radhika ◽  
T. Raja Rani

In the current work, we aim at finding an analytical solution to the problem of fluid flow past a pair of separated non-Newtonian fluid bubbles. These bubbles are assumed to be spherical and non-permeable with the non-Newtonian fluid, viz. the couple stress fluid filling their interior. Further, the bubbles are presumed to be static in the flow domain, where a Newtonian fluid streams past these bubbles with a constant velocity (U) along the negative x-direction. We developed a mathematical model in the bipolar coordinate system for the fluid flow outside the bubbles and the spherical coordinate system inside the bubbles to derive a separable solution for their respective governing equations. Furthermore, to evaluate the model's applicabilities on the industrial front, the data on some widely used industrial fluids are given as inputs to the model, such as density, the viscosity of air or water for the fluid flow model developed for the region outside the fluid bubbles and the data on Cyclopentane or DIDP (non-Newtonian) for that within the bubbles. Some interesting findings are: the pressure in the outer region of the bubbles is higher when filled with low viscous industrial fluid, Cyclopentane, than a high viscous fluid, DIDP. Furthermore, an increase in the viscosity of Cyclopentane did not alter the pressure distribution in the region outside the bubbles. However, there is a considerable effect on this pressure in the case of DIDP bubbles.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


Author(s):  
Michel Molina Del Sol ◽  
Eduardo Arbieto Alarcon ◽  
Rafael José Iorio

In this study, we continue our study of the Cauchy problem associated with the Brinkman equations [see (1.1) and (1.2) below] which model fluid flow in certain types of porous media. Here, we will consider the flow in the upper half-space \[ \mathbb{R}_{+}^{3}=\left\{\left(x,y,z\right) \in\mathbb{R}^{3}\left\vert z\geqslant 0\right.\right\}, \] under the assumption that the plane $z=0$ is impenetrable to the fluid. This means that we will have to introduce boundary conditions that must be attached to the Brinkman equations. We study local and global well-posedness in appropriate Sobolev spaces introduced below, using Kato's theory for quasilinear equations, parabolic regularization and a comparison principle for the solutions of the problem.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
A. Arikoglu ◽  
G. Komurgoz ◽  
I. Ozkol ◽  
A. Y. Gunes

The present work examines the effects of temperature and velocity jump conditions on heat transfer, fluid flow, and entropy generation. As the physical model, the axially symmetrical steady flow of a Newtonian ambient fluid over a single rotating disk is chosen. The related nonlinear governing equations for flow and thermal fields are reduced to ordinary differential equations by applying so-called classical approach, which was first introduced by von Karman. Instead of a numerical method, a recently developed popular semi numerical-analytical technique; differential transform method is employed to solve the reduced governing equations under the assumptions of velocity and thermal jump conditions on the disk surface. The combined effects of the velocity slip and temperature jump on the thermal and flow fields are investigated in great detail for different values of the nondimensional field parameters. In order to evaluate the efficiency of such rotating fluidic system, the entropy generation equation is derived and nondimensionalized. Additionally, special attention has been given to entropy generation, its characteristic and dependency on various parameters, i.e., group parameter, Kn and Re numbers, etc. It is observed that thermal and velocity jump strongly reduce the magnitude of entropy generation throughout the flow domain. As a result, the efficiency of the related physical system increases. A noticeable objective of this study is to give an open form solution of nonlinear field equations. The reduced recurative form of the governing equations presented gives the reader an opportunity to see the solution in open series form.


2020 ◽  
Vol 16 (4) ◽  
pp. 487-492
Author(s):  
Nurazleen Abdul Majid ◽  
Nurul Farahain Mohammad ◽  
Abdul Rahman Mohd Kasim ◽  
Sharidan Shafie

In recent decades, micropolar fluid has been one of the major interesting research subjects due to the numerous applications such as blood, paint, body fluid, polymers, colloidal fluid and suspension fluid. However, the behavior of micropolar fluid flow over a permeable stretching surface of another quiescent fluid with a heavier density of micropolar fluid under the condition of mixed convection is still unknown. Thus, the current work aims to investigate numerically the mixed convection of micropolar fluid flow over a permeable stretching surface of another quiescent fluid. In this research, the similarity transformation is implemented to reduce the boundary layer governing equations from partial differential equations to a system of nonlinear ordinary differential equations. Then, this model is solved numerically using shooting technique with Runge-Kutta-Gill method and applied in Jupyter Notebook using Python 3 language. The behavior of micropolar fluid in terms of velocity, skin friction, microrotation and temperature are analyzed.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


Author(s):  
Abbas Hazbavi ◽  
Sajad Sharhani

In this study, the hydrodynamic characteristics are investigated for magneto-micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are are solved numerically by Explicit Runge-Kutta. The effect of characteristic parameters is discussed on velocity and microrotation in different diagrams. The nonlinear parameter affected the velocity microrotation diagrams. An increase in the value of Hartmann number slows down the movement of the fluid in the channel. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Also the effect of pressure gradient is investigated on velocity and microrotation in different diagrams.


Author(s):  
Khadijah M. Abualnaja

This paper introduces a theoretical and numerical study for the problem of Casson fluid flow and heat transfer over an exponentially variable stretching sheet. Our contribution in this work can be observed in the presence of thermal radiation and the assumption of dependence of the fluid thermal conductivity on the heat. This physical problem is governed by a system of ordinary differential equations (ODEs), which is solved numerically by using the differential transformation method (DTM). This numerical method enables us to plot figures of the velocity and temperature distribution through the boundary layer region for different physical parameters. Apart from numerical solutions with the DTM, solutions to our proposed problem are also connected with studying the skin-friction coefficient. Estimates for the local Nusselt number are studied as well. The comparison of our numerical method with previously published results on similar special cases shows excellent agreement.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882332
Author(s):  
Yang Yang ◽  
Wuhuai Yan ◽  
Jinrui Wang

In this article, Timoshenko’s beam model is established to investigate the wave propagation behaviors for a fluid-conveying carbon nanotube when employing the nonlocal stress–strain gradient coupled theory and nonlocal fluid theory. The governing equations of motion for the carbon nanotube are derived. The small-scale influences induced by the nanotube are simulated by nonlocal and strain gradient effects, and the scale effect induced by fluid flow is first investigated applying nonlocal fluid theory. Numerical results obtained by solving the governing equations indicate that the nonlocal effect induced by the nanotube leads to wave damping and a decrease in stiffness, while the strain gradient effect contributes to wave promotion and an enhancement in stiffness. The scale effect caused by the inner fluid only leads to a decay for a high-mode wave since there is no influence from fluid flow on the low-mode wave. The numerical solution is validated by comparing with Monte Carlo simulation and interval analysis method.


Sign in / Sign up

Export Citation Format

Share Document