scholarly journals Use of Plant Latex for Nanocarrier Synthesis and Utilizing it in Drug Delivery

2020 ◽  
Vol 2 (1) ◽  
pp. 9

One of the most significant applications of nanomedicine is employing nanoparticles for targeted drug delivery. Using latex-based nanocarrier as a drug delivery system serves as better alternatives since it is eco-friendly and rendered non-toxic. The main aim of this study is to extract latex components, synthesize nanocarriers, and encapsulate with a specific drug for its usage in targeted drug delivery. The latex was collected from a latex secreting tree and extracted using polar and non-polar solvents. The synthesis of nanocarriers was done through a microemulsion technique with the use of surfactants. The extracts and nanocarriers were characterized using UV-Vis, FTIR and GC-MS and SEM analysis. The nanocarriers were then encapsulated with a drug, and the drug release profiles are examined. Antibacterial activity of the latex extracts and loaded nanocarriers was measured by agar well diffusion technique, and antioxidant activity was determined by DPPH and TLC analysis. The latex extracts had antioxidant properties, and the drug-loaded nanocarriers had antibacterial activity.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2465
Author(s):  
Chrysanthos Maraveas ◽  
Ilker S. Bayer ◽  
Thomas Bartzanas

Advances in technology have led to the production of sustainable antioxidants and natural monomers for food packaging and targeted drug delivery applications. Of particular importance is the synthesis of lignin polymers, and graft polymers, dopamine, and polydopamine, inulin, quercetin, limonene, and vitamins, due to their free radical scavenging ability, chemical potency, ideal functional groups for polymerization, abundance in the natural environment, ease of production, and activation of biological mechanisms such as the inhibition of the cellular activation of various signaling pathways, including NF-κB and MAPK. The radical oxygen species are responsible for oxidative damage and increased susceptibility to cancer, cardiovascular, degenerative musculoskeletal, and neurodegenerative conditions and diabetes; such biological mechanisms are inhibited by both synthetic and naturally occurring antioxidants. The orientation of macromolecules in the presence of the plasticizing agent increases the suitability of quercetin in food packaging, while the commercial viability of terpenes in the replacement of existing non-renewable polymers is reinforced by the recyclability of the precursors (thyme, cannabis, and lemon, orange, mandarin) and marginal ecological effect and antioxidant properties. Emerging antioxidant nanoparticle polymers have a broad range of applications in tumor-targeted drug delivery, food fortification, biodegradation of synthetic polymers, and antimicrobial treatment and corrosion inhibition. The aim of the review is to present state-of-the-art polymers with intrinsic antioxidant properties, including synthesis scavenging activity, potential applications, and future directions. This review is distinct from other works given that it integrates different advances in antioxidant polymer synthesis and applications such as inulin, quercetin polymers, their conjugates, antioxidant-graft-polysaccharides, and polymerization vitamins and essential oils. One of the most comprehensive reviews of antioxidant polymers was published by Cirillo and Iemma in 2012. Since then, significant progress has been made in improving the synthesis, techniques, properties, and applications. The review builds upon existing research by presenting new findings that were excluded from previous reviews.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Viswanathan Karthika ◽  
Mohamad S. AlSalhi ◽  
Sandhanasamy Devanesan ◽  
Kasi Gopinath ◽  
Ayyakannu Arumugam ◽  
...  

Abstract A hybrid and straightforward nanosystem that can be used simultaneously for cancer-targeted fluorescence imaging and targeted drug delivery in vitro was reported in this study. A chitosan (CS) polymer coated with reduced graphene oxide (rGO) and implanted with Fe3O4 nanoparticles was fabricated. The fundamental physicochemical properties were confirmed via FT-IR, XRD, FE-SEM, HR-TEM, XPS, and VSM analysis. The in vivo toxicity study in zebrafish showed that the nanocomposite was not toxic. The in vitro drug loading amount was 0.448 mg/mL−1 for doxorubicin, an anticancer therapeutic, in the rGO/Fe3O4/CS nanocomposite. Furthermore, the pH-regulated release was observed using folic acid. Cellular uptake and multimodal imaging revealed the benefit of the folic acid-conjugated nanocomposite as a drug carrier, which remarkably improves the doxorubicin accumulation inside the cancer cells over-express folate receptors. The rGO/Fe3O4/CS nanocomposite showed enhanced antibiofilm and antioxidant properties compared to other materials. This study's outcomes support the use of the nanocomposite in targeted chemotherapy and the potential applications in the polymer, cosmetic, biomedical, and food industries.


Sign in / Sign up

Export Citation Format

Share Document