scholarly journals Effective coolant flow rate of flange type fuel element for very high temperature gas-cooled reactor.

Author(s):  
Motoo FUMIZAWA ◽  
Kunihiko SUZUKI ◽  
Tomoyuki MURAKAMI ◽  
Hitoshi HAYAKAWA
2008 ◽  
Vol 7 (1) ◽  
pp. 32-43 ◽  
Author(s):  
Kazutaka OHASHI ◽  
Tetsuo NISHIHARA ◽  
Kazuhiko KUNITOMI ◽  
Masaaki NAKANO ◽  
Yujiro TAZAWA ◽  
...  

2020 ◽  
Vol 22 (2) ◽  
pp. 41
Author(s):  
Endiah Puji Hastuti ◽  
Sudjatmi K. Alfa ◽  
Sudarmono Sudarmono

Bandung TRIGA2000 Reactor, a General Atomic (GA)-made research reactor used for training, research andiIsotope production, has been upgraded to operate at power of 2000 kW using TRIGA fuel rod type. Recently, the TRIGA reactor fuel element producers are going to discontinue the production of TRIGA fuel element. To overcome the unavailability of TRIGA fuel element, BATAN planned to modify TRIGA2000 fuel type from rod-type to U3Si2-Al plate-type fuel with 19.75% enrichment, similar to the domestically fabricated one used in RSG-GAS. The carried out design emphasized on the determination of operation condition limits for setting the reactor protection system in accordance to the reactor safety calculation results. The conceptual design of the innovative fuel plate TRIGA reactor cooling system is expected to remove heat generated by fuels with nominal power of 1 MW up to 2 MW. The design is developed through modelling and safety analysis using COOLOD-N2 validated code. The safety margin is set to its flow instability at transient condition of the fuel plate, which is ≥ 2.38; departure from nucleate boiling ratio ≥1.50; and no onset of nucleate boiling, ΔTONB ≥ 0oC. The primary coolant flow rate accommodating the existing Bandung TRIGA reactor capability is as high as 50 kg/s. The analysis results show that at power of 1 MW, the reactor can safely operate, while at power of 2 MW the safety margin is exceeded. In other words, the plate TRIGA reactor that employs forced convection mode operates safely at 1 MW with excess power 120% of its nominal power.Keywords: 1 MW, Thermalhydraulic design, Steady state condition, TRIGA plate, Constant flowrate


1987 ◽  
Vol 24 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Masuro OGAWA ◽  
Norio AKINO ◽  
Yasuaki SHIINA ◽  
Kaoru FUJIMURA ◽  
Tetsuaki TAKEDA ◽  
...  

Author(s):  
Zhigang Li ◽  
Jun Li ◽  
Liming Song ◽  
Qing Gao ◽  
Xin Yan ◽  
...  

The modern gas turbine is widely applied in the aviation propulsion and power generation. The rim seal is usually designed at the periphery of the wheel-space and prevented the hot gas ingestion in modern gas turbines. The high sealing effectiveness of rim seal can improve the aerodynamic performance of gas turbines and avoid of the disc overheating. Effect of outer fin axial gap of radial rim seal on the sealing effectiveness and fluid dynamics was numerically investigated in this work. The sealing effectiveness and fluid dynamics of radial rim seal with three different outer fin axial gaps was conducted at different coolant flow rates using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and SST turbulent model solutions. The accuracy of the presented numerical approach for the prediction of the sealing performance of the turbine rim seal was demonstrated. The obtained results show that the sealing effectiveness of radial rim seal increases with increase of coolant flow rate at the fixed axial outer fin gap. The sealing effectiveness increases with decrease of the axial outer fin gap at the fixed coolant flow rate. Furthermore, at the fixed coolant flow rate, the hot gas ingestion increases with the increase of the axial outer fin gap. This flow behavior intensifies the interaction between the hot gas and coolant flow at the clearance of radial rim seal. The preswirl coefficient in the wheel-space cavity is also illustrated to analyze the flow dynamics of radial rim seal at different axial outer fin gaps.


2015 ◽  
Vol 1095 ◽  
pp. 846-850
Author(s):  
Min Wang ◽  
Ke Ping Zhang ◽  
Feng Wei Zhang

In order to study the law between the internal coolant flow rate and the temperature of milling roller, the temperature field of water-cooled roller was simulated with Fluent software. The results showed that with the increase of the coolant flow rate, the temperature on roller surface decreased, but after the flow rate of coolant increased to 3.5 kg/s, the temperature of roller maintained invariant almost, so 3.5 kg/s was the best flow rate.


2018 ◽  
Vol 20 (3) ◽  
pp. 123
Author(s):  
Reinaldy Nazar ◽  
Sudjatmi KA ◽  
Ketut Kamajaya

Due to TRIGA fuel elements are no longer produced by General Atomic, it is necessary to find a solution so that the Bandung TRIGA 2000 reactor can still be operated. One solution is to replace the type of fuel elements. Study on using the MTR plate type fuel elements as used in RSG-GAS Serpong has been done for the Bandung TRIGA 2000. Based on the results of the study using CFD computer program, it is found that Bandung TRIGA 2000 with plate type fuel elements cannot be operated up to 2000 kW power by natural convection cooling mode. Therefore, the reactor must be cooled by forced convection. The analysis using forced convection showed that for cooling flow rate of 50 kg/s and various temperatures of 35oC, 35.5 oC and 36 oC, the surface temperature of the fuel element is between 110.37 oC and 111.27 oC. Meanwhile, the cooling water temperature in the corresponding position is between 61.03 oC and 61.95 oC. In this operation condition, the surface temperatures of fuel elements can approach the saturation temperature and nucleat boiling started to occur. Hence, the use of cooling flow rate entering core less than 50 kg/s should be avoided. The surface temperature of fuel elements decreased under saturation temperature if cooling flow rate is greater than 65 kg/s. The surface temperature of fuel elements is achieved at 96.65 oC and coolant temperature in the corresponding position was 54.38 oC. Keywords: Bandung research reactor, plate type fuel element, thermohydraulic, CFD code ANALISIS TERMOHIDROLIK TERAS REAKTOR RISET BANDUNG BERELEMEN BAKAR TIPE PELAT MENGGUNAKAN PROGRAM CFD. Mengingat tidak diproduksinya lagi elemen bakar TRIGA oleh General Atomic, maka perlu diusahakan suatu solusi agar reaktor TRIGA 2000 Bandung dapat tetap beroperasi. Salah satu solusi adalah dengan melakukan penggantian tipe elemen bakar. Pada studi ini telah dianalisis penggunaan elemen bakar tipe pelat yang sejenis dengan yang digunakan di RSG-GAS Serpong, untuk digunakankan pada teras reaktor TRIGA 2000 Bandung. Berdasarkan hasil penelitian yang telah dilakukan dengan menggunakan program komputer CFD, diketahui bahwa reaktor TRIGA berelemen bakar tipe pelat tidak dapat dioperasikan pada daya 2000 kW dengan menggunakan moda pendinginan konveksi alamiah seperti yang digunakan saat ini. Untuk kondisi ini, pendinginan dilakukan dengan moda pendinginan konveksi paksa. Hasil analisis konveksi paksa menunjukkan bahwa dengan menggunakan laju alir pendingin pompa 50 kg/s dan variasi temperatur pada 35 oC, 35,5 oC dan 36 oC, diperoleh temperatur permukaan pelat elemen bakar antara 110,37 oC – 111,27 oC dan temperatur pendinginnya pada posisi terkait antara 61,03 oC – 61,95 oC. Temperatur permukaan pelat elemen bakar ini mendekati temperatur saturasi dan tentunya telah mulai terjadi pendidihan inti, sehingga penggunaan laju alir pendingin masuk teras reaktor kurang dari 50 kg/s perlu dihindari. Temperatur permukaan pelat elemen bakar mulai menurun menjauhi temperatur saturasi jika digunakan laju alir pendingin lebih besar dari 65 kg/s, dengan temperatur permukaan pelat elemen bakar 96,65 oC dan temperatur pendinginnya pada posisi terkait 54,38 oC.Kata kunci: Reaktor riset Bandung, elemen bakar tipe pelat, termohidrolik, program CFD


Author(s):  
K. Asgar Ali ◽  
Quamber H. Nagpurwala ◽  
Abdul Nassar ◽  
S. V. Ramanamurthy

This paper deals with the numerical investigations on a low pressure axial turbine stage to assess the effect of variation in rotor tip clearance and tip coolant ejection rate on the end wall losses. The rotor, along with the NGV, was modeled to represent the entire turbine stage. The CFX TASCflow software was used to perform steady state analysis for different rotor tip clearances and different tip coolant ejection rates. The locations of the cooling slots were identified on the blade tip and the coolant ejection rate was specified at these areas. The simulations were carried out with tip clearances of 0%, 1% and 2% of blade height and ejection flow rates of 0.5%, 0.75% and 1% of main turbine flow rate. It is shown that the size and strength of the leakage vortex is directly related to the tip clearance. The reduction in efficiency is not in linearity with the tip clearance owing to the effect of boundary layer growth on the end walls. Introduction of the tip coolant flow shows increased total–total efficiency compared to that of the uncooled tip. This is attributed to a reduction in the strength of the leakage vortex due to reduced cross-flow over the tip clearance from pressure surface to suction surface. At a coolant flow rate of 0.75% of the main flow rate, there is significant increase in efficiency of about 0.5%. Optimum tip clearance and coolant flow rate are obtained based on the results of the present analysis.


Sign in / Sign up

Export Citation Format

Share Document