scholarly journals Comparison of field data and numerical simulation of nitrate evolution in groundwater using the model of nitrate evolution

2020 ◽  
Vol 27 (1) ◽  
pp. 3-11
Author(s):  
Tooru ABE ◽  
Fumio HIRANO ◽  
Morihiro MIHARA ◽  
Akira HONDA
1988 ◽  
Vol 20 (6-7) ◽  
pp. 263-270 ◽  
Author(s):  
K. Otsubo ◽  
K. Muraoka

The dispersion and resuspension of sediments in Takahamairi Bay basin of Lake Kasumigaura were studied by means of field research and numerical simulation. The field data on wind direction and velocity, lake current, water wave, and turbidity were shown. Based on these results, we discuss how precipitated sediments were resuspended in this shallow lake. To predict the turbidity and the depth of bed erosion, a simulation model was established for this lake. The calculated turbidity showed good agreement with the field data. According to the simulated results, the turbidity reaches 200 ppm, and the bed is eroded several millimeters deep when the wind velocity exceeds 12 m/s in the lake.


1999 ◽  
Vol 2 (03) ◽  
pp. 271-280 ◽  
Author(s):  
Ekrem Kasap ◽  
Kun Huang ◽  
Than Shwe ◽  
Dan Georgi

Summary The formation-rate-analysis (FRASM) technique is introduced. The technique is based on the calculated formation rate by correcting the piston rate with fluid compressibility. A geometric factor is used to account for irregular flow geometry caused by probe drawdown. The technique focuses on the flow from formation, is applicable to both drawdown and buildup data simultaneously, does not require long buildup periods, and can be implemented with a multilinear regression, from which near-wellbore permeability, p * and formation fluid compressibility are readily determined. The field data applications indicate that FRA is much less amenable to data quality because it utilizes the entire data set. Introduction A wireline formation test (WFT) is initiated when a probe from the tool is set against the formation. A measured volume of fluid is then withdrawn from the formation through the probe. The test continues with a buildup period until pressure in the tool reaches formation pressure. WFTs provide formation fluid samples and produce high-precision vertical pressure profiles, which, in turn, can be used to identify formation fluid types and locate fluid contacts. Wireline formation testing is much faster compared with the regular pressure transient testing. Total drawdown time for a formation test is just a few seconds and buildup times vary from less than a second (for permeability of hundreds of millidarcy) to half a minute (for permeability of less than 0.1 md), depending on system volume, drawdown rate, and formation permeability. Because WFT tested volume can be small (a few cubic centimeters), the details of reservoir heterogeneity on a fine scale are given with better spatial resolution than is possible with conventional pressure transient tests. Furthermore, WFTs may be preferable to laboratory core permeability measurements since WFTs are conducted at in-situ reservoir stress and temperature. Various conventional analysis techniques are used in the industry. Spherical-flow analysis utilizes early-time buildup data and usually gives permeability that is within an order of magnitude of the true permeability. For p* determination, cylindrical-flow analysis is preferred because it focuses on late-time buildup data. However, both the cylindrical- and spherical-flow analyses have their drawbacks. Early-time data in spherical-flow analysis results in erroneous p* estimation. Late-time data are obtained after long testing times, especially in low-permeability formations; however, long testing periods are not desirable because of potential tool "sticking" problems. Even after extended testing times, the cylindrical-flow period may not occur or may not be detectable on WFTs. When it does occur, permeability estimates derived from the cylindrical-flow period may be incorrect and their validity is difficult to judge. New concepts and analysis techniques, combined with 3-D numerical studies, have recently been reported in the literature.1–7 Three-dimensional numerical simulation studies1–6 have contributed to the diagnosis of WFT-related problems and the improved analysis of WFT data. The experimental studies7 showed that the geometric factor concept is valid for unsteady state probe pressure tests. This study presents the FRA technique8 that can be applied to the entire WFT where a plot for both drawdown and buildup periods renders straight lines with identical slopes. Numerical simulation studies were used to generate data to test both the conventional and the FRA techniques. The numerical simulation data are ideally suited for such studies because the correct answer is known (e.g., the input data). The new technique and the conventional analysis techniques are also applied to the field data and the results are compared. We first review the theory of conventional analysis techniques, then present the FRA technique for combined drawdown and buildup data. A discussion of the numerical results and the field data applications are followed by the conclusions. Analysis Techniques It has been industry practice to use three conventional techniques, i.e., pseudo-steady-state drawdown (PSSDD), spherical and cylindrical-flow analyses, to calculate permeability and p* Conventional Techniques Pseudo-Steady-State Drawdown (PSSDD). When drawdown data are analyzed, it is assumed that late in the drawdown period the pressure drop stabilizes and the system approaches to a pseudo-steady state when the formation flow rate is equal to the drawdown rate. PSSDD permeability is calculated from Darcy's equation with the stabilized (maximum) pressure drop and the flowrate resulting from the piston withdrawal:9–11 $$k {d}=1754.5\left({q\mu \over r {i}\Delta p {{\rm max}}}\right),\eqno ({\rm 1})$$where kd=PSSDD permeability, md. The other parameters are given in Nomenclature.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. D95-D104 ◽  
Author(s):  
Ruo-Long Song ◽  
Jin-Xia Liu ◽  
Chun-Hui Hou ◽  
Ke-Xie Wang

The two principal functions of a primary cement job are to provide support for the casing and to provide hydraulic isolation between zones. A poor cement job may cause many issues during the well production. Therefore, cement bond evaluation is very important in well completion. The Sector Bond log (SBL) has been widely used for cement bond evaluation for years. The SBL tool has eight pairs of directional transmitter-receivers, which are equally distributed in azimuth and used for identifying channels and channel azimuths. To better understand SBL, using a parallel 3D finite difference algorithm, we numerically simulated acoustic responses of the SBL under a variety of cement bond scenarios and investigated the sensitivity of the integral amplitudes to channel size and its azimuth. We further developed a new approach to image potential channels in cement annulus using the integral amplitudes. The comparisons between conventional SBL images and the reprocessed ones using the new approach showed significant improvement on both synthetic and field data.


2013 ◽  
Vol 423-426 ◽  
pp. 1394-1397
Author(s):  
Ming Chang Li ◽  
Guang Yu Zhang ◽  
Qi Si ◽  
Shu Xiu Liang ◽  
Zhao Chen Sun

Based on the hydrodynamic model and wind field data, a multi-module coupled oil spill model is constructed for simulating the trajectory of oil movement. A case study is researched in Bohai Bay. The model works well and the numerical simulation results show the model is suitable for oil spill trajectory simulation. Two cases are considered with and without wind to show its important influence for the oil spill.


2009 ◽  
Vol 4 (6) ◽  
pp. 469-478 ◽  
Author(s):  
Hiroyuki Fujii ◽  
◽  
Shintaro Hotta ◽  
Nobuo Shuto ◽  

There have been many studies on tsunami forces acting on structures, but few studies on tsunami-induced water flows that move a lot of sands or soils, resulting in damages to such structures as road embankments and seawalls. In the present study, the damage of soil embankments by tsunami overflow is discussed. Hydraulic experiments on movable beds reveal that the erosion of the downstream slope and the scouring at the rear toe are important factors in the erosion of soil embankments. An erosion rate law is experimentally established. Current velocity measured on a fixed bed verifies the application of the CADMAS-SURF to the present situation. A numerical method to simulate the erosion of soil embankments is developed using these data. It is applied to gain insight into the Shuto diagram (2001) about the damages of embankment obtained from field data for local tsunamis of short wave period in the past. Among six tests, reasonable agreements were obtained in four cases. In other two cases, the method gave the larger erosion than the expected ones from the diagram.


1976 ◽  
Vol 1 (15) ◽  
pp. 184
Author(s):  
J.J. Leendertse ◽  
S.K. Liu

This paper describes a hindcast of post-rainstorm coliform bacteria distributions in Jamaica Bay made by use of a water-quality simulation model of that bay and models of the surrounding drainage basins on the basis of tide, wind, and rainfall data. That hindcast is then compared with coliform estimates obtained by field sampling. Although the investigators did not have access to the results of the field sampling until the hindcast was completed, the estimates obtained by simulation agree well with the estimates from field data. It is concluded that the models used here are capable of making predictions for engineering assessments.


Sign in / Sign up

Export Citation Format

Share Document