Numerical simulation of Sector Bond log and improved cement bond image

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. D95-D104 ◽  
Author(s):  
Ruo-Long Song ◽  
Jin-Xia Liu ◽  
Chun-Hui Hou ◽  
Ke-Xie Wang

The two principal functions of a primary cement job are to provide support for the casing and to provide hydraulic isolation between zones. A poor cement job may cause many issues during the well production. Therefore, cement bond evaluation is very important in well completion. The Sector Bond log (SBL) has been widely used for cement bond evaluation for years. The SBL tool has eight pairs of directional transmitter-receivers, which are equally distributed in azimuth and used for identifying channels and channel azimuths. To better understand SBL, using a parallel 3D finite difference algorithm, we numerically simulated acoustic responses of the SBL under a variety of cement bond scenarios and investigated the sensitivity of the integral amplitudes to channel size and its azimuth. We further developed a new approach to image potential channels in cement annulus using the integral amplitudes. The comparisons between conventional SBL images and the reprocessed ones using the new approach showed significant improvement on both synthetic and field data.

1988 ◽  
Vol 20 (6-7) ◽  
pp. 263-270 ◽  
Author(s):  
K. Otsubo ◽  
K. Muraoka

The dispersion and resuspension of sediments in Takahamairi Bay basin of Lake Kasumigaura were studied by means of field research and numerical simulation. The field data on wind direction and velocity, lake current, water wave, and turbidity were shown. Based on these results, we discuss how precipitated sediments were resuspended in this shallow lake. To predict the turbidity and the depth of bed erosion, a simulation model was established for this lake. The calculated turbidity showed good agreement with the field data. According to the simulated results, the turbidity reaches 200 ppm, and the bed is eroded several millimeters deep when the wind velocity exceeds 12 m/s in the lake.


2013 ◽  
Vol 423-426 ◽  
pp. 1292-1295 ◽  
Author(s):  
Xing Yun Wang ◽  
Bin Peng ◽  
Xiao Chao Tang ◽  
Lian Fan

Based on the numerical simulation method, this paper has established the numerical simulation method by using of finite difference software of FLAC3D through establishing interface for digging pile-soil. It can consider mutual effect of digging pile-soil. The uplift bearing capacity of the digging pile in slope ground was calculated and the affecting factors of the bearing capacity were analyzed. The results show that the uplift bearing capacity has a negative correlation with the slope ratio, and has a positive correlation with the width or height of the foundation, which can be expressed as a quadratic polynomial. But when the slope ratio is smaller than a certain extent, the capacity no longer increases. Nonlinear regression analysis of calculation data are carried out. Finally, the calculation method of uplift bearing capacity about pile in the slope is developed, which can provide a reference to specification revision and engineering.


1999 ◽  
Vol 2 (03) ◽  
pp. 271-280 ◽  
Author(s):  
Ekrem Kasap ◽  
Kun Huang ◽  
Than Shwe ◽  
Dan Georgi

Summary The formation-rate-analysis (FRASM) technique is introduced. The technique is based on the calculated formation rate by correcting the piston rate with fluid compressibility. A geometric factor is used to account for irregular flow geometry caused by probe drawdown. The technique focuses on the flow from formation, is applicable to both drawdown and buildup data simultaneously, does not require long buildup periods, and can be implemented with a multilinear regression, from which near-wellbore permeability, p * and formation fluid compressibility are readily determined. The field data applications indicate that FRA is much less amenable to data quality because it utilizes the entire data set. Introduction A wireline formation test (WFT) is initiated when a probe from the tool is set against the formation. A measured volume of fluid is then withdrawn from the formation through the probe. The test continues with a buildup period until pressure in the tool reaches formation pressure. WFTs provide formation fluid samples and produce high-precision vertical pressure profiles, which, in turn, can be used to identify formation fluid types and locate fluid contacts. Wireline formation testing is much faster compared with the regular pressure transient testing. Total drawdown time for a formation test is just a few seconds and buildup times vary from less than a second (for permeability of hundreds of millidarcy) to half a minute (for permeability of less than 0.1 md), depending on system volume, drawdown rate, and formation permeability. Because WFT tested volume can be small (a few cubic centimeters), the details of reservoir heterogeneity on a fine scale are given with better spatial resolution than is possible with conventional pressure transient tests. Furthermore, WFTs may be preferable to laboratory core permeability measurements since WFTs are conducted at in-situ reservoir stress and temperature. Various conventional analysis techniques are used in the industry. Spherical-flow analysis utilizes early-time buildup data and usually gives permeability that is within an order of magnitude of the true permeability. For p* determination, cylindrical-flow analysis is preferred because it focuses on late-time buildup data. However, both the cylindrical- and spherical-flow analyses have their drawbacks. Early-time data in spherical-flow analysis results in erroneous p* estimation. Late-time data are obtained after long testing times, especially in low-permeability formations; however, long testing periods are not desirable because of potential tool "sticking" problems. Even after extended testing times, the cylindrical-flow period may not occur or may not be detectable on WFTs. When it does occur, permeability estimates derived from the cylindrical-flow period may be incorrect and their validity is difficult to judge. New concepts and analysis techniques, combined with 3-D numerical studies, have recently been reported in the literature.1–7 Three-dimensional numerical simulation studies1–6 have contributed to the diagnosis of WFT-related problems and the improved analysis of WFT data. The experimental studies7 showed that the geometric factor concept is valid for unsteady state probe pressure tests. This study presents the FRA technique8 that can be applied to the entire WFT where a plot for both drawdown and buildup periods renders straight lines with identical slopes. Numerical simulation studies were used to generate data to test both the conventional and the FRA techniques. The numerical simulation data are ideally suited for such studies because the correct answer is known (e.g., the input data). The new technique and the conventional analysis techniques are also applied to the field data and the results are compared. We first review the theory of conventional analysis techniques, then present the FRA technique for combined drawdown and buildup data. A discussion of the numerical results and the field data applications are followed by the conclusions. Analysis Techniques It has been industry practice to use three conventional techniques, i.e., pseudo-steady-state drawdown (PSSDD), spherical and cylindrical-flow analyses, to calculate permeability and p* Conventional Techniques Pseudo-Steady-State Drawdown (PSSDD). When drawdown data are analyzed, it is assumed that late in the drawdown period the pressure drop stabilizes and the system approaches to a pseudo-steady state when the formation flow rate is equal to the drawdown rate. PSSDD permeability is calculated from Darcy's equation with the stabilized (maximum) pressure drop and the flowrate resulting from the piston withdrawal:9–11 $$k {d}=1754.5\left({q\mu \over r {i}\Delta p {{\rm max}}}\right),\eqno ({\rm 1})$$where kd=PSSDD permeability, md. The other parameters are given in Nomenclature.


2001 ◽  
Author(s):  
X. Ai ◽  
B. Q. Li

Abstract Turbulent magnetically flows occur in a wide range of material processing systems involving electrically conducting melts. This paper presents a parallel higher order scheme for the direct numerical simulation of turbulent magnetically driven flows in induction channels. The numerical method is based on the higher order finite difference algorithm, which enjoys the spectral accuracy while minimizing the computational intensity. This, coupled with the parallel computing strategy, provides a very useful means to simulate turbulent flows. The higher order finite difference formulation of magnetically driven flow problems is described in this paper. The details of the parallel algorithm and its implementation for the simulations on parallel machines are discussed. The accuracy and numerical performance of the higher order finite difference scheme are assessed in comparison with the spectral method. The examples of turbulent magnetically driven flows in induction channels and pressure gradient driven flows in regular channels are given, and the computed results are compared with experimental measurements wherever possible.


1990 ◽  
Vol 34 (02) ◽  
pp. 105-122
Author(s):  
Hideaki Miyata ◽  
Makoto Kanai ◽  
Noriaki Yoshiyasu ◽  
Yohichi Furuno

The diffraction of regular waves by advancing wedge models is studied both experimentally and numerically. The nonlinear features of diffracted waves are visualized by wave pattern pictures and the formation is analyzed by the grid-projection method. The experimental observation indicates that the diffracted waves have a number of nonlinear characteristics similar to shock waves due to the interaction of incident waves with the advancing obstacle in the flow-field caused by the advancing motion. Bow waves of both oblique type and normal detached type are observed at remarkably lower Froude numbers than in the case of a ship in steady advance motion. Their occurrence systematically depends on the Froude number and the wedge angle. The numerical simulation of this phenomenon by a finite-difference method shows approximate agreement with the experimental results.


2021 ◽  
Author(s):  
Song Du ◽  
Seong Lee ◽  
Xian-Huan Wen ◽  
Yalchin Efendiev

Abstract The imbibition process due to capillary force is an important mechanism that controls fluid flow between the two domains, matrix and fracture, in naturally or hydraulically fractured reservoirs. Many simulation studies have been done in the past decades to understand the multi-phase flow in the tight and shale formation. Although significant advances have been made in large-scale modeling for both unconventional and conventional fields, the imbibition processes in the fractured reservoirs remains underestimated in numerical simulation, that limits confidence in long-term field production predictions. In the meanwhile, to simulate the near-fracture imbibition process, traditionally very-fine simulation grids have to be applied so that the physical phenomena of small-length scale could be captured. However, this leads to expensive computation cost to simulate full-field models with a large number of fractures. To improve numerical efficiency in field-scale modeling, we propose a similarity solution for the imbibition process that can be incorporated into the traditional finite difference formulation with coarse grid cells. The semi-analytical similarity solutions are validated by comparing with numerical simulation results with fine-scale grids. The comparison clearly indicates that the proposed algorithm accurately represents the flow behaviors in complex fracture models. Furthermore, we adopt the semi-analytical study to hydraulic fracture models using Embedded Discrete Fracture Model (Lee et al., 2001) in our numerical studies at different scales to represent hydraulic fractures that are interconnected. We demonstrate: 1) the imbibition is critical in determining flow behavior in a capillary force dominant model, 2) conventional EDFM has its limitation in capturing sub-cell flow behaviors near fractures, 3) combining the proposed similarity solution and EDFM, we can accurately represent the multi-phase flow near fractures with coarser grids, and 4) it is straightforward to adapt the similarity solution concept in finite-difference simulations for fractured reservoirs


Sign in / Sign up

Export Citation Format

Share Document