Modeling a sound-driven Ethernet network in the GPSS World environment

Author(s):  
P.A. Starodubtsev ◽  
◽  
E.A. Storozhok ◽  
2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.


Impact ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 9-11
Author(s):  
Tomohiro Fukuda

Mixed reality (MR) is rapidly becoming a vital tool, not just in gaming, but also in education, medicine, construction and environmental management. The term refers to systems in which computer-generated content is superimposed over objects in a real-world environment across one or more sensory modalities. Although most of us have heard of the use of MR in computer games, it also has applications in military and aviation training, as well as tourism, healthcare and more. In addition, it has the potential for use in architecture and design, where buildings can be superimposed in existing locations to render 3D generations of plans. However, one major challenge that remains in MR development is the issue of real-time occlusion. This refers to hiding 3D virtual objects behind real articles. Dr Tomohiro Fukuda, who is based at the Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering at Osaka University in Japan, is an expert in this field. Researchers, led by Dr Tomohiro Fukuda, are tackling the issue of occlusion in MR. They are currently developing a MR system that realises real-time occlusion by harnessing deep learning to achieve an outdoor landscape design simulation using a semantic segmentation technique. This methodology can be used to automatically estimate the visual environment prior to and after construction projects.


2021 ◽  
pp. 096739112110093
Author(s):  
Edgar Vázquez-Núñez ◽  
Andrea M Avecilla-Ramírez ◽  
Berenice Vergara-Porras ◽  
María del Rocío López-Cuellar

The current world environment scenario demands new and more eco-friendly solutions to global problems that cover the demands for materials. This sector has included green polymer-based composites and natural reinforcers from origins of renewable sources, these Green Composites (GC), natural-fiber-reinforced bio-composites in which the matrix is a bio-based polymer, have shown attractive characteristics. Biodegradability is one of the most important attributes for these new “green” materials, in that this characteristic allows for their introduction into the world market as an environmental solution. The manufacturing processes for obtaining these materials have observed important improvements because each raw material exhibits different properties and characteristics and their eco-friendly character has facilitated its incorporation into diverse sectors, such as construction, automotive, packaging, and medicine, among others. At present, this segment represents an important income for some economies, especially those where these resources are available, enhancing the creation of green economies, strengthening the world’s efforts toward sustainability.


2019 ◽  
Vol 214 ◽  
pp. 01037
Author(s):  
Marco Boretto

The aim of the NA62 experiment is to study the extreme rare kaon decay K+ ? π+vv and to measure its branching ratio with a 10% accuracy. In order to do so, a very high intensity beam from the CERN SPS is used to produce charged kaons whose decay products are detected by many detectors installed along a 60 m decay region. The NA62 Data Acquisition system (DAQ) exploits a multi-level trigger system; following a Level0 (L0) trigger decision, 1 MHz data rate from about 60 sources is read by a PC-farm, the partial event is built and then passed through a series of Level1 (L1) algorithms to further reduce the trigger rate. Events passing this level are completed with the missing, larger, data sources (~400 sources) at the rate of 100 KHz. The DAQ is built around a high performance ethernet network interconnecting the detectors to a farm of 30 servers. After an overall description of the system design and the main implementation choices that allowed to reach the required performance and functionality, this paper describes the overall behaviour of the DAQ in the 2017 data taking period. It then concludes with an outlook of possible improvements and upgrades that may be applied to the system in the future.


1991 ◽  
Vol 18 (2) ◽  
pp. 99-100
Author(s):  
Fernando Collor
Keyword(s):  

Author(s):  
Sidney D’Mello ◽  
Eric Mathews ◽  
Lee McCauley ◽  
James Markham

We studied the characteristics of four commercially available RFID tags such as their orientation on an asset and their position in a three dimensional real world environment to obtain comprehensive data to substantiate a baseline for the use of RFID technology in a diverse supply chain management setting. Using RFID tags manufactured by four different vendors and a GHz Transverse Electromagnetic (GTEM) cell, in which an approximately constant electromagnetic (EM) field was maintained, we characterized the tags based on horizontal and vertical orientation on a simulated asset. With these baseline characteristics determined, we moved two of the four tags through a real world environment in three dimensions using an industrial robotic system to determine the effect of asset position in relation to the reader on tag readability. Combining the data collected over these two studies, we provide a rich analysis of the feasibility of asset tracking in a real world supply chain, where there would likely be multiple tag types. We offer fine grained analyses of the tag types and make recommendations for diverse supply chain asset tracking.


1981 ◽  
Vol 49 (3) ◽  
pp. 851-855
Author(s):  
Bernice N. Ezeilo

This study examined the criteria used by 138 Zambian children in their responses to Furth's non-verbal weight conservation test via posttest interviews. Thirty seven and seven tenths percent of the children responded by weight, 29% by size, 4.4% by size and weight, and 1.4% by size and shape. Others either did not respond at all or gave other nonrelevant responses. Of the conservers, 46% responded by weight while 53% responded by nonweight criteria. The remaining 1% gave nonrelevant responses. All were expected to respond by weight alone. These results raise some doubt about the validity of evidence for weight conservation among African children, based on Furth's non-verbal technique. To improve communication of the weight concept, it is recommended that this test be modified to include a pretraining in size-weight discrimination. A major obstacle to the effective use of the clinical method, by the non-indigenous, for the study of cognitive processes in Third World environment is the problem of verbal communication, so attempts are made to use non-verbal methods. One such attempt was made by Heron and Simonsson (3) who used Furth's non-verbal conservation test to study weight conservation by Zambian children. Furth (2) developed this technique for studying weight conservation of deaf children. It involves essentially three stages. The first requires practice with weights of different sizes. Second, there is practice with obviously equal and obviously unequal balls of plasticine. The third stage is the test. The two practice stages were to ensure that the children had fully understood that same weight was indicated by a horizontal movement of both hands simultaneously and that a judgment of heavier must be communicated by allowing the hand to fall sharply on the table.


Sign in / Sign up

Export Citation Format

Share Document