scholarly journals Dimethyl Disulfide- A Potential Biopesticide Against Root-Knot Nematode of Tomato (Lycopersicon Esculentum L.)

2012 ◽  
Vol 36 (4) ◽  
pp. 685-695 ◽  
Author(s):  
MI Faruk ◽  
ML Rahman ◽  
MMM Mustafa ◽  
IR J Coosemans

Dimethyl disulfide (DMDS), the natural biopesticide extracted from Allium spp., was evaluated against root-knot nematode (Meloidogyne incognita) of tomato (Lycopersicon esculentum L.) in greenhouse pot culture. All concentrations of DMDS viz. 30 ml, 60 ml, and 80 ml and Aldicarb @ 2g per square meter of soil were effective against root-knot disease under both wet and dry conditions of soil. Nematode incidence was reduced drastically by higher dose of DMDS and Aldicarb @ 2g but did not accelerate vegetative growth of tomato plant especially when tomato seedlings were transplanted immediately after soil treatment. Low concentration of DMDS (30 ml per square meter of soil) was found appropriate for controlling root-knot nematode of tomato, accelerating saprophytic nematode population in soil and also enhancing vegetative growth of tomato plant under dry condition of soil.   DOI: http://dx.doi.org/10.3329/bjar.v36i4.11759   Bangladesh J. Agril. Res. 36(4): 685-695, December 2011  

2021 ◽  
Vol 108 (Special) ◽  
Author(s):  
Ganeshan k ◽  
◽  
Vetrivelkalai p ◽  
Bhagawati B ◽  
Nibha G ◽  
...  

A field survey was conducted in 12 districts of Assam viz., Jorhat, Golaghat, Nagaon, Marigaon, Goalpara, Dibrugarh, Tinsukia, Lakhimpur, Dhemaji, Sivsagar, Kamrup and Barpeta. A total of 92 root samples were collected and 37 bacterial isolates were isolated from commercial banana cultivars. The culture filtrates extracted from 37 endophytic bacterial isolates, were screened against southern root-knot nematode, Meloidogyne incognita in vitro and under pot culture studies. The five bacterial isolates viz., EB4, EB8, BC1, BC11 and BC12 showed 100% inhibition of egg hatching and juvenile mortality of M. incognita with an exposure period of 48 and 72h. On seed bacterization, with these five promising isolates, two isolates viz.EB4, BC1 significantly enhanced germination percentage (33.33, 25.31%) and vigour index (75.5, 64.39%) of paddy, receptively. The potential bacterial isolates viz., BC1 and EB4 were identified as Lysinibacillus sp. and Pseudomonas sp., respectively , based on the morphological phenotypic and biochemical characterization. The pot culture experiment revealed that the bacterial endophytes viz., Lysinibacillus sp. (BC1) Pseudomonas sp. (EB4) significantly reduced the soil (61.64, 56.71%) and root nematode population (77.29, 68.87%), number of adult females (73.97, 69.89%), egg masses (85.63, 80.11%) and root-knot index (1.33, 1.67) of M. incognita compared to untreated control. The bacterial endophytes viz., Pseudomonas sp. (EB4), Lysinibacillus sp. (BC1) were also significantly increased the growth parameters viz., shoot length (43.33, 39.18%), and root length (78.24, 59.26%) and pesudostem girth (58.38, 52.13%).


2012 ◽  
Vol 48 (No. 4) ◽  
pp. 170-178 ◽  
Author(s):  
M.S. Khalil ◽  
M.E.I. Badawy

The nematicidal activity of four molecular weights (2.27 &times; 10<sup>5</sup>, 3.60 &times; 10<sup>5</sup>, 5.97 &times; 10<sup>5</sup>, and 9.47 &times; 10<sup>5</sup> g/mol) of a biopolymer chitosan was assayed against the root-knot nematode, Meloidogyne incognita, in vitro and in pot experiments. In laboratory assays, the nematode mortality was significantly influenced by exposure times and chitosan molecular weight. Low molecular weight chitosan (2.27 &times; 10<sup>5</sup> g/mol) was the most effective in killing the nematode with EC<sub>50</sub> of 283.47 and 124.90 mg/l after 24 and 48 h of treatment, respectively. In a greenhouse bioassay, all the compounds mixed in soil at one- and five-fold concentrations of the LC<sub>50</sub> value significantly reduced population, egg mass, and root galling of tomato seedlings compared with the untreated control. In general, the nematicidal activity of these compounds was increased dramatically with a decrease in the molecular weight. The results suggest that the chitosan at low molecular weight may serve as a natural nematicide


1961 ◽  
Vol 39 (3) ◽  
pp. 695-703 ◽  
Author(s):  
M. I. Timonin

The effects of the odoriferous volatile matter produced by Scaptocoris talpa Champ on the activity of Fusarium oxysporum f. cubense (E.F.S.) Sny. and Hans., F. oxysporum f. lycopersici (Sacc.) Sny. and Hans., and Meloidogyne incognita in soil, and its phytotoxicity to tomato seedlings, were investigated.The results obtained indicated that 50–75 insects per pot protected tomato seedlings (Bonny Best) and banana plants (Gros Michel) from attack by their respective fungus pathogens and one insect per 2 grams of soil protected tomato seedlings from attack by root-knot nematode.The apparatus especially constructed to study the phytotoxicity of odoriferous volatile matter to tomato seedlings and its effect on microbial population of the soil was described. By means of this apparatus it was found that 6 days of a weak flow of a mixture of air and volatile matter produced by 350–400 insects was not phytotoxic to six tomato seedlings. Furthermore, it was also found that volatile matter produced by 800 insects, under the same conditions, was not toxic to one tomato seedling. Under similar conditions the non-phytotoxic concentration of volatile matter produced by 350–400 insects reduced the density of F. oxysporum f. cubense population in soil samples containing 25 and 15% (w/w) of moisture by 61.20 and 45.78% respectively.It was also demonstrated that one insect per 2 grams of soil infested with the root-knot nematode during 16 hours' incubation produced a nematocidal concentration of volatile matter.The possibility of selective toxicity of volatile odoriferous matter to various bacteria is also discussed.


1970 ◽  
Vol 36 (3) ◽  
pp. 477-486 ◽  
Author(s):  
MI Faruk ◽  
MI Rahman ◽  
MR Ali ◽  
MM Rahman ◽  
MMH Mustafa

A field experiment was conducted in two consecutive years to find out the efficacy of poultry refuse (PR), mustard oilcake (MOC), and Furadan 5G for the management of root-knot disease (Meloidogyne incognita) of tomato. Soil was treated with PR @ 3 and 5 t/ha, MOC @ 0.3 and 0.6 t/ha 3 weeks before transplanting and Furadan 5G @ 40 kg/ha on the day of transplanting of tomato seedlings. PR @ 3 t/ha and MOC @0.3 t/ha were applied alone and also mixed with Furadan 5G @ 20 kg/ha. The soils of the experimental plots were inoculated with chopped severely galled (M incognita) roots of tomato at the time of treatment application. In both the years, considerable reduction in rootknot disease and increase in plant growth and fruit yield were achieved with different treatments with two organic materials applied alone or mixed with Furadan 5G. The most effective treatment was PR @ 3 t/ha + Furadan 5G @ 20 kg/ha followed by PR alone @ 5 t/ha. Efficacy of PR @ 3 t/ha and MOC @ 0.6 1/ha were also appreciable. In first year and second year, gall index values were 6.50 and 6.27 under control, respectively. The severity was reduced to 2.27-4.00 in first year and 1.73-4.07 in second year due to application of the four treatments. On the other hand, fruit yield under control was 50.9 t/ha at first year and 47.6 t/ha in second year. The highly effective four treatments increased fruit yield to 71.1-82.5 t/ha in first year and 60.8-82.0 t/ha in second year. The fruit yield of tomato was directly and linearly correlated with gall indices in tomato gall. Based on findings of the study PR @ 3 t/ha + Furadan @20 kg/ha and PR alone @ 5 t/ha were noted as effective treatment to manage root-knot disease of tomato. Keywords: Poultry refuse; mustard oilcake; Furadan; Meloidogjyne incognita; tomato. DOI: http://dx.doi.org/10.3329/bjar.v36i3.9275 BJAR 2011; 36(3): 477-486


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Harjot Singh Sidhu ◽  
Rambir Singh Kanwar

Abstract Background Organic amendments are well known for influencing soil nematode community structure, diversities, and activities. Most of the previous studies focused on effects of organic amendments on plant-parasitic nematodes, but only a few investigated the effect of combination of biocontrol agents and organic amendments on soil nematodes. Main body Different organic amendments (neem cake, poultry manure, and neem leaves) were combined with the predatory nematode, Fictor composticola, for the control of root-knot nematode, Meloidogyne incognita, in cucumber. Organic amendments were mixed in pots containing 1 kg soil, 15 days before sowing. Cucumber (cv. CCH-1) plants grown in these pots were inoculated by 2000 J2 of M. incognita and 400 F. composticola per pot, after 1 week of germination. Fictor composticola in combination with chicken manure + neem cake + neem leaves was found the best mixture for reducing the number of galls, egg masses, and final root-knot nematode population. The predator’s population reached the maximum in this treatment. All combinations of organic amendments in the presence of F. composticola were found significantly superior over inoculated check in reducing nematode’s population and in improving plant growth over the un-inoculated check. Conclusions Data indicated the suitability of using the predatory nematode, F. composticola, and organic amendments for potential use in sustainable nematode management strategies.


2019 ◽  
Vol 11 (1) ◽  
pp. 16-22
Author(s):  
N. B. Izuogu ◽  
H. S. Baba ◽  
E. O. Winjobi

Abstract Two field trials were carried out at the Teaching and Research Farm of the University of Ilorin in the 2012 and 2014 planting seasons to find out the effeciency of Trichoderma harzianum as a bio-control agent in controlling root-knot nematode (Meloidogyne incognita) in two pepper varieties (F1 Nikita and Gianfranco Fuscello). A 2 × 2 factorial design fitted into a randomized complete block design (RCBD) was used with 5 replications. The T. harzianum filtrate significantly increased plant height, number of leaves, and yield. The control showed higher root galling and soil nematode population. Varietal differences showed that F1 Nikita performed significantly better than G. Fuscello. The combination of Trichoderma and F1 Nikita appears effective for managing root-knot nematodes.


Sign in / Sign up

Export Citation Format

Share Document