scholarly journals Effect of BAU-Biofungicide, Neem Oil and a Nematicide on the Root-Knot (Meloidogyne javanica) of Papaya (Carica papaya)

2012 ◽  
Vol 37 (2) ◽  
pp. 271-277 ◽  
Author(s):  
MAA Pradhan ◽  
MM Rahaman ◽  
SK Paul ◽  
MU Ahamad ◽  
BK Goswami

In a pot experiment, BAU-Biofungicide (Trichoderma harzianum) neem oil and  curaterr (carbofuran) 5G were tested against root-knot (Meloidogyne javanica)  of two papaya varieties Kashempuri and Deshi papaya. Seedlings were  inoculated with second stage larvae of M. javanica. Neem oil (5 ml/ 10g seeds)  and BAU-Biofungicide (1:4) were used as seed treatant and curaterr as side  dressing. Both the bio-agents significantly increased the root and shoot growth  of papaya plant and reduction of galls and eggmasses and suppressed the  development of J2, J3, and J4 and adult females of M. javanica. Efficacy of  BAU-Biofungicide was to reduce the gall and nematode development and to  increase plant growth was similar to nematicide curaterr. BAU-Biofungicide  gave higher effect in most of the growth characters compared to neem oil and  prevented the development of adult females and juveniles like nematicide  curaterr. DOI: http://dx.doi.org/10.3329/bjar.v37i2.11230 Bangladesh J. Agril. Res. 37(2): 271-277, June 2012

Weed Science ◽  
1970 ◽  
Vol 18 (6) ◽  
pp. 692-696 ◽  
Author(s):  
J. Deli ◽  
G. F. Warren

Root application ofN,N-dimethyl-2,2-diphenylacetamide (diphenamid) caused reduction of root and shoot growth of oats (Avena sativaL., var. Jaycee) seedlings. Shoot application did not affect plant growth, but studies with labeled diphenamid showed that diphenamid will enter also through the shoot. In ivyleaf morningglory (Ipomoea hederaceaL.), a considerable amount of label was translocated from the roots to the shoots, but not in oats seedlings. The difference in tolerance between these two species (oats susceptible, morningglory resistant) may lie in the ability of morningglory to translocate diphenamid out of the roots into the shoots faster than oats. The inhibitory effect of diphenamid was restricted to the site of uptake. Reduction in shoot growth of treated plants was the result of the limited root system and it was not a direct effect of diphenamid. Diphenamid was 10 times as toxic to oats as its metabolites. Oats seedlings inhibited by diphenamid for up to 5 days, and then placed in water recovered from the diphenamid caused inhibition. The resumed root growth appeared to be normal. The amount of uptake of14C-labeled sucrose by excised roots treated with 10−5M diphenamid was equal to that in untreated roots; however, more sugar was incorporated into the untreated roots than the treated roots. It appears that diphenamid is a reversible metabolic inhibitor; it inhibits cell division in the root tip perhaps by limiting utilization of substrates in the cells.


1915 ◽  
Vol 35 ◽  
pp. 46-53
Author(s):  
Rosalind Crosse

Part I of this work on Growth Periodicity (Proc. Roy. Soc. Edin., vol. xxxiii, Part I (No. 8), p. 85) dealt with the occurrence of a four-day periodicity in plant organs and with rhythm in roots. With reference to the latter, the following conclusions were deduced from various observations made up to that time:—1. “Roots exhibit a periodicity under ordinary conditions of environment which differs from that of shoots.2. “Owing to correlation, the root periodicity is affected by changes in the root rhythm, but to what extent has yet to be determined.”Since then, numerous experiments have been performed to find out whether any correlation exists between the growth of the root and the shoot, and if so, the nature of such a correlation.


1993 ◽  
Vol 20 (5) ◽  
pp. 425 ◽  
Author(s):  
R Munns ◽  
RE Sharp

Hormones appear to be important in controlling plant growth in soils of low water potential, particularly in changing the root:shoot ratio as the soil dries or becomes saline, and in communicating soil conditions to the leaves. This review has necessarily focused on abscisic acid (ABA), as there is little information about the role of other hormones in controlling growth in dry or saline soils. ABA is partly responsible for the differential response of root and shoot growth to dry soils. In dry soil it maintains root growth and inhibits shoot growth. However, when applied to well-watered plants, it usually inhibits root and shoot growth, showing that plants in dry soil respond quite differently from well-watered plants. ABA affects the rate of cell expansion in plants in dry soils: it maintains cell expansion in roots and inhibits that in leaves. It may also affect the rate of cell production, but little is known about this. The role of ABA as a long-distance signal in controlling growth by root-to-shoot communication is unclear: the concentrations found in xylem sap can affect stomatal conductance, but seem too low to affect leaf expansion. Yet drought and salinity generally affect leaf expansion before they affect leaf conductance. A possible solution to this puzzle is that ABA is transported in xylem sap in a complexed form, or that another compound in xylem sap stimulates the synthesis or activity of ABA in leaves, or affects leaf expansion independently of ABA.


2014 ◽  
Vol 2 (4) ◽  
pp. 413-419
Author(s):  
Tanoy Mukherjee ◽  
Avijit Ghosh ◽  
Santanu Maitra

Plant growth promoting bacteria (PGPB) are known to influence plant growth by various direct or indirect mechanisms. Present study was conducted with an aim to estimate the PGPB potential of two nickel tolerant bacterial isolates from river Hooghly. Isolates (I-3) (Gram negative coccobacilli) and (II-1) (Gram positive rods) were observed, among a total of 22 other isolates, to tolerate and accumulate significant amounts of nickel and also have multiple Plant Growth Promoting (PGP) activities like IAA production and phosphate solubilization. Present study also shows that seeds of yellow mustard (Brassica hirta) inoculated with both the test isolates individually, significantly enhanced root and shoot growth and also protected the plant from the various phytotoxic effects of nickel.DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11107 Int J Appl Sci Biotechnol, Vol. 2(4): 413-419 


Author(s):  
Angélica Miamoto ◽  
Andressa Cristina Zamboni Machado ◽  
Orazília França Dorigo ◽  
Thaísa Muriel Mioranza ◽  
Heriksen Higashi Puerari ◽  
...  

Root-knot nematodes are obligate parasites, so changes at their feeding sites can limit their development. Alterations to feeding sites is one of the main actions taken by antagonistic plants. The aim of this study was to assess the response and histopathology of interactions between Meloidogyne javanica and the roots of Macrotyloma axillare cv. Java. The penetration and development of the nematode was assessed from 8 to 30 days after inoculation (DAI) with 3000 eggs + second-stage juveniles (J2) of M. javanica. The reproduction factor (RF) was assessed at 60 DAI, with two inoculation levels, 700 and 1000 eggs + J2, and the changes in the development and histopathology of M. javanica was assessed at 10, 15 and 30 DAI. Suscetible soybean was used as a control. The development of nematodes at the third (J3) and fourth juvenile (J4) stages was delay, despite the presence of J2 inside the roots, and no adult females were found in the M. axillare cv. Java roots. RF was 0.31 and 0.39 for M. axillare cv. Java and 3.40 and 4.52 for soybean at inoculation levels of 700 and 1000 eggs + J2, respectively. The feed cells in M. axillare cv. Java could not effectively nourish the nematode, which led to deformed females 30 DAI. The feed cells and nematode development, however, were normal in soybean. M. axillare cv. Java was resistant to M. javanica and had an antagonistic potential, because it did not prevent the nematode from penetrating the roots but had a negative effect on M. javanica due to the inefficiency of the feeding site.


Nematology ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 381-399 ◽  
Author(s):  
Yasinta Beda Nzogela ◽  
Ashura Luzi-Kihupi ◽  
Dirk De Waele ◽  
Godelieve Gheysen

Summary The host response to Meloidogyne javanica infection of selected Oryza sativa and NERICA (New Rice for Africa) genotypes that are commonly grown in Tanzania and East Africa was examined. The O. sativa genotypes ‘Komboka’ and ‘Supa’ appeared to be partially resistant. A further experiment showed that both genotypes are also partially resistant to M. graminicola infection. The host response of ‘Komboka’ and ‘Supa’ to M. javanica and M. graminicola was further examined and compared in indoor growth chamber conditions. The genotypes ‘TOG5674’, ‘TOG5675’, ‘CG11’ and ‘CG14’ (both O. glaberrima) were included as the resistant reference genotypes for M. graminicola and the genotype ‘UPLRi-5’ (O. sativa) was included as the susceptible reference genotype for both species of root-knot nematodes. Meloidogyne graminicola was more aggressive on ‘Komboka’ and ‘Supa’ than M. javanica. Significantly less root galling was observed on ‘Komboka’ and ‘Supa’ than on ‘UPLRi-5’. In ‘Komboka’ and ‘Supa’ significantly fewer second-stage juveniles (J2) were able to penetrate the roots, to develop into adult females and to reproduce compared with ‘UPLRi-5’. Differential emigration of J2 from the roots of ‘Komboka’ and ‘Supa’ compared with ‘UPLRi-5’ contributed to the observed partial resistance in these genotypes to M. graminicola and M. javanica. Nematodes that successfully penetrated and developed in ‘Komboka’ and ‘Supa’ showed aberrant phenotypes. ‘Supa’ and ‘Komboka’ may be recommended for use by farmers in M. javanica and M. graminicola-infested fields.


1996 ◽  
Vol 36 (2) ◽  
pp. 219 ◽  
Author(s):  
GK McDonald ◽  
G Dean

The effect of waterlogging on the severity of disease caused by Mycosphaerella pinodes infection in field pea was measured in 2 experiments in the glasshouse. Disease significantly reduced root and shoot growth in both experiments. In a comparison of 2 cultivars with different sensitivities to waterlogging, the severity of disease was lower in the cultivar which was less sensitive to short-term waterlogging. Flooding the roots of plants after infection increased the visual symptoms of disease, but if plants were inoculated with the pathogen after flooding commenced, disease severity was reduced by waterlogging. Inoculation before waterlogging significantly reduced plant dry matter, but there was no reduction in plant growth by disease when inoculation occurred after waterlogging commenced. The results suggest that waterlogging of peas already infected with Mycosphaerella pinodes may result in more severe infection and greater reductions in plant growth, and cultivars more sensitive to waterlogging damage may also suffer greater losses from disease.


HortScience ◽  
2020 ◽  
Vol 55 (6) ◽  
pp. 787-794
Author(s):  
Jesús Gallegos ◽  
Juan E. Álvaro ◽  
Miguel Urrestarazu

The response of root growth in containers has been studied in recent decades. The objective was to evaluate the effect of four types of containers on root and shoot growth. The containers were two shapes, round and square, and in some containers, internal vertical walls (IVWs) were placed that increased the internal container surface area with two substrates: perlite and coir fiber. Seedlings of cucumber, pepper, and tomato were transplanted. Two experiments were performed: vegetative growth and drought stress by partial decapitation and a period without fertigation. After decapitation, preexisting and new leaf area, dry biomass or the leaves, and stem were measured. The results revealed that the type of container had no effect, nor were there significant differences between substrates. The containers with IVWs exhibited an increase in biomass and the root surface. The total contact surface with the substrate of the four container types was closely related to the recorded plant growth. Thus, IVWs not only decrease mechanical problems of roots by preventing spiralling but also favor the production of biomass in vegetable plants and substantially increase the root, enabling the plants to manage water deficit and potentially improve posttransplant stress.


Sign in / Sign up

Export Citation Format

Share Document