scholarly journals Evaluation of in vitro Dissolution Profile and Physicochemical Characterization of Polymer Based Formulations of Sparingly Soluble Rosuvastatin

2021 ◽  
Vol 20 (2) ◽  
pp. 199-211
Author(s):  
KM Yasif Kayes Sikdar ◽  
Md Shahoriar Nazir ◽  
Md Mahbubul Alam ◽  
Md Raihan Sarkar ◽  
Sad Al Rezwan Rahman

Rosuvastatin (RVT) is a BCS class II antilipidemic crystalline drug, which exhibits low bioavailability due to its very poor aqueous solubility; therefore, it is challenging to develop a proper formulation of RVT. To enhance solubility and bioavailability of this API, an attempt has been made by implementing solid dispersion technique. Solid dispersion (SD) technique is a solubility enhancing technique where one or more active entities are dispersed in an inert medium (matrix or carrier) at solid state. In this study, different ratios of Kollicoat® IR (KIR) and Kollidon® 90F (KF90) polymers were used with API to prepare various formulations by physical mixing (PM) and SD approaches; here solvent evaporation technique was used whereas methanol was used as solvent which was completely evaporated from the homogenously dispersed system by placing in a water-bath at 60-65°C and then in oven for 30 minutes at 50 °C. Among the formulations, RVT-KF90 SD formulations showed the most promising result in in-vitro study in terms of drug release profile (78.04 – 99.21%) in comparison to pure RVT (63.1%) and physical mixing of RVT with those polymers. USP dissolution apparatus type II was used at 37°C ± 0.5°C with 50 rpm to conduct the in-vitro experiment. The experiment also unraveled that the dissolution of RVT improved with increasing the amounts of polymers. Subsequently, stability of the developed formulations was conducted by Fourier transforms infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) as well as scanning electron microscopy (SEM). The results obtained from FTIR ensured no involvement of any significant drug-excipient interaction. Moreover, the DSC study signified thermal stability at high temperature. Besides, the SEM micrograph illustrated homogenous distribution of RVT in the polymer and transformation of crystal-like RVT into amorphous formulations. Dhaka Univ. J. Pharm. Sci. 20(2): 199-211, 2021 (December)

Author(s):  
Nikita Sehgal ◽  
Vishal Gupta N ◽  
Gowda Dv ◽  
Sivadasu P

 Objective: The aim of the present study was to increase the dissolution rate of glibenclamide (GLIB) by molecular dispersion of drug in the polymeric matrix of Pluronic F-127.Methods: GLIB-loaded solid dispersions were formulated by fusion method. The formulated solid dispersions were characterized for scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and evaluated for percentage yield, drug content, solubility, and in vitro dissolution profile, and stability studies were conducted as per International Conference on Harmonisation guidelines Q1A in stability chamber, both at intermediate and accelerated conditions.Results: Both XRD and DSC studies suggested that crystalline GLIB was converted to amorphous form after loading into carrier. SEM studies revealed that the prepared solid dispersions were in the form of irregular particles with the absence of crystalline material. Due to this conversion of crystalline to amorphous state, formulated solid dispersions had shown improved dissolution rate profile of GLIB and stability studies suggested that formulated solid dispersions showed no significant changes in appearance and also in drug content.Conclusion: Thus, from the obtained results, it can be concluded that dissolution profile of GLIB can be improved by formulating as solid dispersion.


Author(s):  
Kamalpreet Kaur ◽  
Taranjit Kaur ◽  
Ajeet Pal Singh ◽  
Amar Pal Singh

The improvement of a pure drug's solubility and dissolution rate in the treatment of hyperlipidemia. Simvastatin is a 5-percent absolute bioavailability selective competitive inhibitor of HMG Co-A reductase. For the selection of the carrier, a preliminary solubility investigation of solid dispersion was performed, and solid dispersion was made using Hydroxy Propyl Methyl Cellulose (HPMC) and gum acacia. Solid dispersion of medication with polymer was created and studied for solubility and in-vitro dissolution profile. Solid dispersion of drug with polymer has shown an increase in solubility and improved dissolution rate. On the obtained formulations, further FTIR, X-Ray, Scanning electron microscopy, and Differential scanning calorimetry experiments were conducted. The existence of amorphous form in a solid dispersion made with polymer in a 1:5 ratio is verified by characterization research. The research also showed that using a solid dispersion approach with Polymer, the dissolving rate of a pure medication may be significantly increased.


2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (12) ◽  
pp. 34-40
Author(s):  
M Panchpuri ◽  
◽  
D Singh ◽  
A Semalty ◽  
M. Semalty

Ofloxacin, a second generation fluoroquinolone, shows poor aqueous solubility and dissolution profile. Thus, ofloxacin–β-cyclodextrin complexes were prepared to improve its dissolution by imparting an environment of improved hydrophilicity. Ofloxacin was complexed with β-cyclodextrin (in 1:1 and 1:2 molar ratio) by two different methods namely, solvent evaporation and kneading method. These inclusion complexes were evaluated for solubility, drug content, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X ray powder diffraction (XRPD) and in vitro dissolution study. The highest drug content (35.45%) was found in complex made by kneading method (OK1:1) in 1:1 molar ratio. All the complexes OSE1:1, OSE1:2, OK1:1, OK1:2 were found to be showing rough and porous surface morphology in SEM. Solubility as well as the dissolution of the complexes was found to be improved. Complex prepared by kneading method in 1:1 molar ratio (OK1:1) showed a marked improvement in percent drug release (88.94%) than that of pure drug (54.22%) at the end of 1 hour in dissolution study. FTIR, DSC and XRPD data confirmed the formation of inclusion complex. It was concluded that the complex made in 1:1 molar ratio (irrespective of the method) showed better solubility and dissolution profile as compared to complex made in 1:2 molar ratio.


Author(s):  
UDAYKUMAR B. BOLMAL ◽  
PRAMOD H. J.

Objective: The goal of the present investigation was to improve the solubility and bioavailability of atovaquone tablet, using in-house biosynthesized biosurfactant in the ternary system of solid dispersion containing hydrophilic polymers with varying concentrations of biosurfactant. Atovaquone is an anti-malarial agent and belongs to biopharmaceutical classification system class IV. Methods: The solid dispersion of binary and ternary mixture was prepared using hydroxyl propyl methyl cellulose (HPMC) and biosurfactant respectively by a solvent evaporation method. All the atovaquone tablet formulations were prepared by incorporation of physical mixture, binary and ternary solid dispersed products with excipients by direct compression method. Pre-compression and post-compression parameters of atovaquone tablets were evaluated. In vivo bioavailability study was performed using female albino rabbits. Results: In vitro dissolution profile of binary and ternary system of solid dispersion products showed 8.65% and 34.64% respectively. Precompression and post-compression values of all atovaquone tablets formulations were within the specified limits. In vitro dissolution efficiency of F2 and F5 were 1.44 fold and 6.62 fold respectively, in accordance to the F1. In vivo study revealed that bioavailability of optimized formulation F5 was increased by 2.5 times and time to reach peak concentration was reduced to 1.4 h, in accordance to pure atovaquone suspension. Conclusion: Potential application of biosurfactant in the solid dosage form of atovaquone tablet was proved for enhanced dissolution rate and bioavailability of atovaquone for malaria treatment.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3512
Author(s):  
Mohammed F. Aldawsari ◽  
Md. Khalid Anwer ◽  
Mohammed Muqtader Ahmed ◽  
Farhat Fatima ◽  
Gamal A. Soliman ◽  
...  

Sildenafil citrate (SLC) is a frequently used medication (Viagra®) for the treatment of erectile dysfunction (ED). Due to its poor solubility, SLC suffers from a delayed onset of action and poor bioavailability. Hence, the aim of the proposed work was to prepare and evaluate solid dispersions (SDs) with hydrophilic polymers (Kolliphor® P188, Kollidon® 30, and Kollidon®-VA64), in order to enhance the dissolution and efficacy of SLC. The SLC-SDs were prepared using a solvent evaporation method (at the ratio drug/polymer, 1:1, w/w) and characterized by Differential Scanning Calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscope (SEM), drug content, yield, and in vitro release studies. Based on this evaluation, SDs (SLC-KVA64) were optimized, with a maximum release of drug (99.74%) after 2 h for all the developed formulas. The SDs (SLC-KVA64) were further tested for sexual behavior activity in male rats, and significant enhancements in copulatory efficiency (81.6%) and inter-copulatory efficiency (44.9%) were noted in comparison to the pure SLC drug, when exposed to the optimized SLC-KVA64 formulae. Therefore, SD using Kollidon®-VA64 could be regarded as a potential strategy for improving the solubility, in vitro dissolution, and therapeutic efficacy of SLC.


Author(s):  
PAYAL D. BORAWAKE ◽  
KAUSLYA ARUMUGAM ◽  
JITENDRA V. SHINDE

Objective: The objective of the present work was to formulate the solid dispersions of simvastatin for enhancement of its aqueous solubility and dissolution rate. Methods: In the present study, solid dispersions of simvastatin were prepared by Kneading and Solvent evaporation methods. The polymeric carriers like Polyethylene glycol (PEG) 6000 and Polyvinyl Pyrrolidone (PVP) K30 were used in different ratios (ratio of drug: carrier was 1:1, 1:2) to formulate solid dispersions. The prepared solid dispersions were characterized by differential scanning calorimetry (DSC), Fourier transforms infrared spectroscopy (FTIR), and evaluated for drug content, percentage yield, saturation solubility, in vitro dissolution studies. The best formula of the solid dispersion was selected according to the solubility and dissolution data. Results: The F7 formulation was found to be an optimized formulation containing PVP K30 in the ratio 1:1 prepared by solvent evaporation technique. The Drug content was found to be higher i.e. 94.89 in the F7 batch. The FT-IR spectra revealed that there was no interaction between drugs and carriers. DSC thermogram indicated entrapment of simvastatin in PVP K30 and the conversion of crystalline simvastatin into an amorphous form. The F7 formulation showed maximum drug release i.e. 98.60% in 60 min which is 2 times greater than pure drug making it an optimized formulation. Conclusion: The solubility of simvastatin was successfully enhanced through the solid dispersion technique. Solid dispersions prepared with solvent evaporation method were more soluble than solid dispersions prepared with kneading method with carrier PVP K30.


Author(s):  
B Sangameswaran ◽  
M Gomathi

The poor solubility of drug substances in water and their low dissolution rate in aqueous G.I.T fluid often leads to insufficient bioavailability. As per Biopharmaceutical Classification System (BCS), Olmesartan belongs to the class-II category having poor solubility and high permeability. Since only dissolved drug can pass the gastrointestinal membrane, the proper solubility of the drug is ultimately desired. Its oral bioavailability is 26%. Hence, an attempt was made to enhance its solubility by formulating solid dispersions using different techniques viz., Melting, Kneading, Co-precipitation, Solvent evaporation and Physical mixing etc., Drug and carrier (Urea) in different ratios like 1: 1, 1: 2, 1: 3 and 1:4 were used for formulating solid dispersions. The compatibility of the drug with the carrier was checked by FTIR studies, these results revealed that there was no interaction between them. The angle of repose, bulk density, tapped density; Carr’s index and Hausner ratio were calculated for the micrometric characterization of all the solid dispersions. The drug content was found to be high and uniform in all formulations. The prepared Solid dispersion SEM4 (1:4) showed minimal wetting time of 13 seconds compared with the other formulations. In vitro dissolution, release studies in Phosphate buffer pH of 6.8 revealed that the prepared solid dispersions showed faster drug release compared with the pure drug.  The in vitro dissolution profile showed ascendency on increasing the carrier concentration


2017 ◽  
Vol 1 (2) ◽  
pp. 01-03
Author(s):  
Samuel Langhorne

Pramipexole dihydrochloride monohydrate is an antiparkinson’s agent which is known as dopamine D2 receptor agonist. It is structurally different from the ergot-derived drugs, e.g. bromocriptine or pergolide. Pramipexole is designated chemically as (S)-2-Amino-4, 5, 6, and 7-tetrahydro-6-(propylamino) benzothiazole and has the molecular formula C10H17N3S. It comes under class I of Biopharmaceutical Classification System. The purpose of this study was to develop and evaluate pramipexole dihydrochloride monohydrate extended release tablets by wet granulation method using different proportions of polymers and binder. Pre-formulation studies were done initially and the results were found to be within the limits. All the mentioned batches were prepared and granules were evaluated for pre-compression parameters such as loss on drying, bulk density, tapped density and compressibility index. Tablets were evaluated for weight variation, thickness, hardness, friability; disintegration time and assay were found to be within the limits. In vitro dissolutions were performed with 0.05M 6.8 PH phosphate buffer and effect of various polymers were explored. Final selection of formulation was based on dissolution profile, from dissolution studies formulation 9 showed 80% drug release within 20 hours, so it will be compared with innovator. Similarity and difference factors which revealed that formulation (F 9) containing HPMC K 200, Eudragit L100 and binder are most successful as it exhibited in vitro drug release that matched with innovator product. In vitro drug release profile reveals that with increased concentration of Eudragit L 100. Accelerated stability studies were performed for the optimized batch which indicated that there were no changes in drug content and in vitro dissolution.


Author(s):  
Erizal Zaini ◽  
Salman Umar ◽  
Nurhidayah Nurhidayah

ABSTRACTObjective: To improve dissolution rate of valsartan from solid dispersion system of valsartan and D(−) mannitol using co-grinding approach.Methods: Valsartan solid dispersion with different ratio of D(−) mannitol (1:1; 1:3 and 1: 5) were prepared by co-grinding method. Solid statecharacterization of the solid dispersion system was evaluated in term of crystallographic properties (powder X-ray diffraction), thermal behavior(differential scanning calorimetry [DSC]) and morphology (scanning electron microscope). The profile of dissolution rate was examined using USPdissolution apparatus type I at a temperature of 37±0.5°C.Results: Based on thermal analysis DSC and powder X-ray diffraction analysis, valsartan was transformed from semicrystalline phase to amorphousstate as indicated by the disappearance of its melting endothermic peaks and the characteristic diffraction peaks. The in vitro dissolution rate studyrevealed that all solid dispersion system showed significant increase in dissolution rate compared with the intact valsartan.Conclusion: Solid dispersion of valsartan with D(−) mannitol prepared by co-grinding technique has successfully improved the dissolution ratecompared with intact valsartan.Keywords: Valsartan, D(−) mannitol, Solid dispersion, Co-grinding, Dissolution rate.


Sign in / Sign up

Export Citation Format

Share Document