scholarly journals Mathematical Model Applied to Monitoring the Glucose-Insulin Interaction inside the Body of Diabetes Patients

2020 ◽  
Vol 40 (1) ◽  
pp. 1-12
Author(s):  
Sonia Akter ◽  
Md Sirajul Islam ◽  
Md Haider Ali Biswas ◽  
Sajib Mandal

The incidence and prevalence of diabetes are increasing all over the world and complication of diabetes constitutes a burden for the individuals and whole society. In this paper, we propose a mathematical model for monitoring glucose-insulin regulatory system in the human body. The non-linear cases are considered, and the model is analysed by using Lyapunov’s method. The mathematical model, discussed the critical situation of the diabetes patients as well as for normal person are analysed for stability. The numerical approximation is used to verify the analytical results and the obtained solutions represent the complex situation of diabetes patients. GANIT J. Bangladesh Math. Soc.Vol. 40 (2020) 1-12

2014 ◽  
Vol 590 ◽  
pp. 451-457
Author(s):  
Sen Nan Song ◽  
Fa Chao Jiang ◽  
Hong Shi

The present work is concerned with the rolling motion of the battery pack when EV travelling on the road. First McPherson suspension system was regarded as the research object with detailed analysis of its structural features and motion characteristics. Establish the mathematical model which could apply to calculating the rolling motion of the vehicle body. Through MATLAB/Simulink simulation software, we could calculate the rolling angle on passive suspension. On this basis, assume that the battery pack mounted on the vehicle body and make it passive connection and PID connection. When the body rolls, the battery pack will produce a certain angle then. Next establish the mathematical model to summarize the relationship between the two variables. Then we set the parameters and calculate the roll angle of battery pack in both cases for comparison. Simulation results show that road irregularities will make battery rotate an angle and PID controller can effectively reduce the angle, especially angular acceleration. This paper put forward a new idea that battery is connected with body by active control on EV, and proves the superiority in reducing the rolling angle.


2021 ◽  
Vol 14 (3) ◽  
pp. 90-96
Author(s):  
Anastasia Goncharova ◽  
Maria Vil'

The paper presents the implementation of the mathematical model of cancer taking into account interference competition and the model of continuous treatment with a constant concentration of the drug in the patient's blood. The implementation was carried out using the MATLAB SimBiology application package. The principle of implementation of different stages of the course of the disease within the framework of one model is described. On the basis of the constructed models and SimBiology tools, a modification was carried out that implements the discrete administration of doses of the drug in courses and takes into account its dynamics in the body, taking into account the assumption that the drug is consumed only to suppress cancerous cells.


2018 ◽  
Vol 13 (5) ◽  
pp. 43 ◽  
Author(s):  
S. Boujena ◽  
O. Kafi ◽  
A. Sequeira

The recruitment of leukocytes and subsequent rolling, activation, adhesion and transmigration are essential stages of an inflammatory response. Chronic inflammation may entail atherosclerosis, one of the most devastating cardiovascular diseases. Understanding this mechanism is of crucial importance in immunology and in the development of anti-inflammatory drugs. Micropipette aspiration experiments show that leukocytes behave as viscoelastic drops during suction. The flow of non-Newtonian viscoelastic fluids can be described by differential, integral and rate-type constitutive equations. In this study, the rate-type Oldroyd-B model is used to capture the viscoelasticity of the leukocyte which is considered as a drop. Our main goal is to analyze a mathematical model describing the deformation and flow of an individual leukocyte in a microchannel flow. In this model we consider a coupled problem between a simplified Oldroyd-B system and a transport equation which describes the density considered as non constant in the Navier–Stokes equations. First we present the mathematical model and we prove the existence of solution, then we describe its numerical approximation using the level set method. Through the numerical simulations we analyze the hemodynamic effects of three inlet velocity values. We note that the hydrodynamic forces pushing the cell become higher with increasing inlet velocities.


Author(s):  
Sandesh Mahamure ◽  
Poonam N. Railkar ◽  
Parikshit N. Mahalle

Now we are in the era of ubiquitous computing. Internet of things (IoT) is getting matured in various parts of the world. In coming few years' billions and trillions of things will be connected to the internet. To deal with these huge number of devices in a network we need to consider Quality of Service (QoS)parameters so that system operations can be performed in a smoother way. Mathematical modelling of these QoS parameters gives an idea about which factors are needs to consider while designing any IoT-enabled system at the same time it will give the performance analysis of the system before implementation. In this paper comprehensive literature survey is done to discuss various issues related to QoS and gap analysis is also done for IoT Enabled systems. This paper proposes general steps to build a mathematical model for a system. It also proposes the mathematical model for QoS parameters like reliability, communication complexities, latency and aggregation of data for IoT. To support proposed mathematical model proof of concept also given.


2020 ◽  
Vol 30 (11) ◽  
pp. 2050062
Author(s):  
João Angelo Ferres Brogin ◽  
Jean Faber ◽  
Douglas Domingues Bueno

Epilepsy affects about 70 million people in the world. Every year, approximately 2.4 million people are diagnosed with epilepsy, two-thirds of them will not know the etiology of their disease, and 1% of these individuals will decease as a consequence of it. Due to the inherent complexity of predicting and explaining it, the mathematical model Epileptor was recently developed to reproduce seizure-like events, also providing insights to improve the understanding of the neural dynamics in the interictal and ictal periods, although the physics behind each parameter and variable of the model is not fully established in the literature. This paper introduces an approach to design a feedback-based controller for suppressing epileptic seizures described by Epileptor. Our work establishes how the nonlinear dynamics of this disorder can be written in terms of a combination of linear sub-models employing an exact solution. Additionally, we show how a feedback control gain can be computed to suppress seizures, as well as how specific shapes applied as input stimuli for this purpose can be obtained. The practical application of the approach is discussed and the results show that the proposed technique is promising for developing controllers in this field.


2010 ◽  
Vol 171-172 ◽  
pp. 644-647
Author(s):  
Shao Qiang Yuan ◽  
Xin Xin Li

Bent-arm PenduBot is more similar to human arm, which attaches more and more robot experts’ attention around the world. As the foundation of the multi-link PenduBot control, the mathematical model should be established first. Based on the method of kinematics and dynamics, the N-link bent-arm PenduBot mathematical models are established in this paper, including the nonlinear model and the linear model. The natural characteristics of different pendulum are analyzed. By using the condition number of the controllability matrix, the control difficulty for higher order systems is compared.


2010 ◽  
Vol 171-172 ◽  
pp. 205-210
Author(s):  
Tong Zhao ◽  
Hou Ming Fan ◽  
Gui Lin Wang

In the world today, science and technology in natural disasters forecasting is changing with each passing day and is built up to a rather high level. But local, territorial, even just national or worldwide scope natural disasters have also posed a grave menace to human well-being and development. Therefore, researching on optimizing problem of vehicle routing for emergent relief supplies of multi-reserves, it is vital significant to quickly send relief supplies to the sufferers after sudden natural disasters. Then, we draw out the mathematical model and solve the problem reasonably based on the improved ant colony algorithm, at last, we obtain the satisfy results through an empirical exemple.


Author(s):  
Geoffry N. Mercer ◽  
Harvinder S Sidhu

We investigate the thermal performance of protective clothing that has an embedded phase change layer. Heat absorption due to phase change within the material is used to limit the thermal penetration of heat into the material and hence to the firefighter. The distribution of temperature within the fabric and skin during the exposure to an extreme firefighting situation is determined. To determine the protective nature of the clothing, we also include a model of the skin as three layers with differing thermal properties namely the epidermis, dermis and the subcutaneous layer. In our model, we have also incorporated the air gap between the garment and the body. The mathematical model is used to predict the duration of fire exposure during which the garment is able to protect the firefighter from getting first and second degree burns.


Author(s):  
Wei Gao ◽  
Benbing Gao ◽  
Hongsong Fang ◽  
Xin Lu

In this paper, the full strap-down seeker of rotating bomb is taken as the research object, and the method of extracting the LOS (line-of-sight) angle and angular rate of the full strap-down seeker of the rotating bomb is studied. The structure of the full strap-down seeker is quite different from that of the conventional rate gyro seeker. The measurement system of full strap-down seeker is fixed to the missile, the seeker can only obtain the measurement information in the projectile coordinate system, and the measurement information is coupled with the body posture information, so it cannot be directly used for the control guidance of the rotating projectile. First, based on the conversion relationship between coordinate systems, the mathematical model of the inertial LOS angle of the rotating bomb is established, and the mathematical model of the extraction of the inertial LOS angle and angular rate of the rotating bomb is further established. Then, the Kalman filter is designed by using the unscented Kalman filter method (UKF), and the extracted LOS angle containing noise information is filtered. Finally, the mathematical simulation is carried out to verify the validity of the mathematical model of LOS angle and angular rate extraction. Compared with the Extended Kalman filter method (EKF), the UKF has a higher accuracy for estimating the navigation information of the full strap-down rotating projectile.


Sign in / Sign up

Export Citation Format

Share Document