scholarly journals Formulation and evaluation of fast dissolving tablet of albendazole

2012 ◽  
Vol 1 (10) ◽  
pp. 311-316 ◽  
Author(s):  
Devendra Revanand Rane ◽  
Hemant Narhar Gulve ◽  
Vikas Vasant Patil ◽  
Vinod Madhaorao Thakare ◽  
Vijay Raghunath Patil

Albendazole is broad spectrum anthelmintic use against many helminths. It is used for treatment of Threadworm, Hookworm, and Tapeworm. It has low bioavailability due to its first pass metabolism.  In the present work, fast dissolving tablet of Albendazole was design with a view to and provide a quick onset of action. The main objective of the study was to formulate fast dissolving tablets of Albendazole to achieve a better dissolution rate and further improving the bioavailability of the drug. Fast dissolving tablets prepared by direct compression and using super disintegrants in different concentration and evaluated for the pre-compression parameters. The prepared tablets were evaluated for post compressional evaluation. Among all, the formulation F3 containing 5%w/w superdisintegrant Crospovidone and 20%w/w Microcrystalline Cellulose was considered to be best formulation, which release up to 99.097% in 40 min.DOI: http://dx.doi.org/10.3329/icpj.v1i10.11848 International Current Pharmaceutical Journal 2012, 1(10): 311-316 

Author(s):  
Anil M Pethe ◽  
A.T. Patil ◽  
D R Telange ◽  
A A Tatode

In this study, attempts were made to design and developed disintegrating drug delivery system, Acetaminophen fast disintegrating tablet (AFDT) by combining super disintegrants and direct compression method. Acetaminophen is widely used as “over the counter” and “common household drug” as analgesic and antipyretic along with poor absorption due to first pass metabolism. So we aimed to use our novel delivery system to achieve rapid absorption in patients like mentally ill, bed ridden and those who do not have easy access to water. The (AFDT) were produced by combining three super disintegrants viz. Croscarmellose, Crospovidone and Sodium starch glycolate in 4% w/w as ratio of (1:1, 1:2, 2:1) using direct compression method. The optimized batch (A3) of tablet were evaluated for post – compression parameters like hardness (4.5 ± 0.75 kg.cm2), friability ((0.76 %), wetting time (42 ± 0.92 sec), water absorption ratio (98.6 %), disintegration time (24.00 ± 0.83 sec.) were found to be acceptable according to standard limits. The in vitro release rate of acetaminophen from (AFDT) was found to be more than that simple formulation in pH (5.8) using USP dissolution test apparatus type-II. These results indicated that, the new (AFDT) formulation system combined advantage of faster release of acetaminophen, which had better effects of rapid oral absorption. Therefore, the AFDT may be used as fast disintegrating delivery system for OTC drug with poor absorption due to first pass metabolism.


Author(s):  
RAJNI BALA ◽  
SHAILESH SHARMA ◽  
IKGPTU

Objective: The present study was aimed to formulate fast dissolving tablets (FDTs) of Aprepitant (APT) using natural and synthetic superdisintegrants with the desired onset of action, increased bioavailability by reducing the frequency of dosage and also reduce the first-pass metabolism of the drug. Methods: In this research, the gum isolated from cordia dichotoma was investigated as super disintegrants in fast dissolving tablets (FDTs). The aprepitant tablets were prepared separately using cordia dichotoma (natural), sodium starch glycolate and croscarmellose sodium (synthetic) as superdisintegrants by direct compression method. The tablets were evaluated for various precompression and post-compression parameters. Results: The optimized formulation (APT F3) of cordia dichotoma (8%) showed satisfactory physicochemical properties, minimum disintegration time (34 seconds) and highest dissolution rate (86.52%) in 10 min than the other synthetic superdisintegrants. Also, the pharmacokinetic study of the optimized formulation showed effective results as compared with marketed product of aprepitant. Conclusion: The developed formulation can improve the onset of action as well as improve patient compliance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 563
Author(s):  
Filipe Fernandes ◽  
Mónica Dias-Teixeira ◽  
Cristina Delerue-Matos ◽  
Clara Grosso

The biggest obstacle to the treatment of diseases that affect the central nervous system (CNS) is the passage of drugs across the blood-brain barrier (BBB), a physical barrier that regulates the entry of substances into the brain and ensures the homeostasis of the CNS. This review summarizes current research on lipid-based nanoparticles for the nanoencapsulation of neuroprotective compounds. A survey of studies on nanoemulsions (NEs), nanoliposomes/nanophytosomes and solid lipid nanoparticles (SLNs)/nanostructured lipid carriers (NLCs) was carried out and is discussed herein, with particular emphasis upon their unique characteristics, the most important parameters influencing the formulation of each one, and examples of neuroprotective compounds/extracts nanoencapsulated using these nanoparticles. Gastrointestinal absorption is also discussed, as it may pose some obstacles for the absorption of free and nanoencapsulated neuroprotective compounds into the bloodstream, consequently hampering drug concentration in the brain. The transport mechanisms through which compounds or nanoparticles may cross BBB into the brain parenchyma, and the potential to increase drug bioavailability, are also discussed. Additionally, factors contributing to BBB disruption and neurodegeneration are described. Finally, the advantages of, and obstacles to, conventional and unconventional routes of administration to deliver nanoencapsulated neuroprotective drugs to the brain are also discussed, taking into account the avoidance of first-pass metabolism, onset of action, ability to bypass the BBB and concentration of the drug in the brain.


2016 ◽  
Vol 5 (2) ◽  
pp. 9-13
Author(s):  
K. Srinija ◽  
P.K. Lakshmi

Lamotrigine a BCS class II drug used in treatment of epilepsy has several disadvantages when taken orally (first pass metabolism and increased Cmax). The aim of the study is to design core in cup (In lay) buccoadhesive tablets which aims for controlled, unidirectional release, increased patient compliance and decreased side effects. The present study involves the preparation of core in cup tablets containing release retarding polymers like sodium alginate, xanthan gum and HPMC E 15LV in core and HPMC K 15M in cup for mucoadhesion. L9 orthogonal array Taguchi design was constructed for the study. The dependent variable studied for L9 orthogonal array Taguchi runs include % drug release from which the formulation with highest S/N ratio was optimized. All the runs were evaluated for physical parameters, drug release, mucoadhesive studies and assay. L1, L2, L4 and L8 formulations showed controlled release for up-to 8 hours with good assay values. The model dependent kinetics showed zero order kinetics with super case II transport and Hixson Crowell mechanism which indicates unidirectional drug release.Srinija and Lakshmi, International Current Pharmaceutical Journal, January 2016, 5(2): 9-13


Author(s):  
Puttaswamy Nirmala

Ramipril being ACE inhibitor belongs to BCS class II drug with low solubility and undergoes first-pass metabolism that leads to reduced bioavailability of 28%. The current research is aimed at formulating and evaluating ramipril fast dissolving oral films (FDOF). Solubility enhancement of ramipril was done by formation of   inclusion complex with β-cyclodextrin in 3 ratios (1:0.5, 1:1, 1:2). Based on higher drug content and dissolution values the physical mixture of ramipril with β-cyclodextrin in 1:1 ratio (IC2) was chosen for further studies. Total 12 formulations of ramipril FDOF containing IC2 prepared with various polymers and evaluated for physicochemical properties. The optimized formulation F9 shown better tensile strength (11.6 g/cm2), significant % elongation (9.8) and maximum % drug content of 99.98 %. The formulation F9 exhibited minimum disintegration time of 9 sec that is desirable for immediate onset of action and maximum drug release. The FTIR data of F9 assured the compatibility of drug and formulation excipients, found to be stable for 180 days at accelerated conditions. The study confirmed that ramipril FDOF lead to quicker onset of action and enhanced therapeutic efficiency in comparison to marketed product.


Author(s):  
Rawaa M. Hussien ◽  
Mowafaq M. Ghareeb

Isradipine belong to dihydropyridine (DHP) class of calcium channel blockers (CCBs). It is  used in the treatment of hypertension, angina pectoris, in addition to Parkinson disease. It goes under the BCS class II drug (low solubility-high permeability). The drug will experience extensive first-pass metabolism in liver, therefore, oral bio-availability will be approximately15 to 24 %.    The aim of this study was to formulate and optimize a stable  nanoparticles of a highly hydrophobic drug, isradipine by anti-solvent microprecipitation Method to achieve the higher in vitro dissolution rate, so that it will be absorbed by intestinal lymphatic transport in order to avoid hepatic first-pass metabolism  and improve drug bioavailability.   Twenty one formulas of Isradipine nanoparticles were prepared by antisolvent precipitation method utilizing one of these polymers (Poloxamer 188, PVP-k30, HPMC E5, PVA, Poloxamer 407, and Soluplus) at different drugs: polymer ratios. The polymer type, the drug to polymer ratio, ultrasonication power and the effect of addition of co-stabilizer on the particle size, and polydispersity index (PDI)  were investigated.   Among all the prepared nanoparticles formulas, formula (F9) which contain Soluplus as a stabilizer at polymer: drug ratio of (1:0.75) and solvent: antisolvent ratio of (1:9) was considered as the optimum formula which shows good evaluation parameters in addition to the increment in the solubility to about 10 times than that of the pure drug. The investigations of the drug–excipients compatibility studies by FTIR and DSC, crystalline state by P-XRD, surface morphology by SEM were done. Moreover, the analysis by DSC and SEM of the nanoparticles of the selected formula (F12) indicate a reduction in the crystallinity and amorphization of the drug. It can be concluded that the dissolution rate of Isradipine was significantly increased through particle size reduction to nanosize.            


Planta Medica ◽  
2008 ◽  
Vol 74 (03) ◽  
Author(s):  
N Ngo ◽  
Z Yan ◽  
TN Graf ◽  
DR Carrizosa ◽  
EC Dees ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 37-49
Author(s):  
Jagdale Sachin ◽  
Panbude Aishwarya ◽  
Navasare Priya

Background and Objective: Upon oral administration domeperidone is rapidly absorbed, but subjected to the first pass effect which lowers systemic bioavailability to 15%. Mucoadhesive tablet can remain attached to buccal mucosa and becomes capable of bypassing hepatic first-pass metabolism to improve absorption directly into systemic circulation. The present research work was carried with an aim to develop, evaluate and optimize mucoadhesive tablet containing domperidone (DOME) for buccal delivery using different bio-adhesive polymeric combinations. </P><P> Methods: The buccal tablets were formulated by wet granulation method using isopropyl alcohol. The preliminary formulations were prepared using combinations of HPMC K4, HPMC K15, HPMC K100, HPMC E5 as mucoadhesive polymers. 32 full factorial design was applied to determine the effect of independent variables like concentration of mucoadhesive polymers (HPMC K15 and HPMC K100) over dependent variables like mucoadhesive properties (swelling index, bioadhesive strength and in vitro drug release). The prepared mucoadhesive tablets were evaluated for their tablet properties and mucoadhesive properties. The interactions between drug and polymers were studied by Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). </P><P> Results: All formulations of factorial design showed satisfactory physicochemical, mechanical and bioadhesive characteristics. The formulation F9 exhibited maximum cumulative drug release, mucoadhesive strength and swelling index. Conclusion: The developed buccal tablet of domperidone might prove alternative to bypass the hepatic first pass metabolism and to avoid degradation which in turn may result in reducing the frequency of administration. Thus, mucoadhesive tablet of domeperidone may become viable alternative overcoming the side effects; achieving greater therapeutic effectiveness and improving the patient compliance.


1988 ◽  
Vol 11 (9) ◽  
pp. 620-624 ◽  
Author(s):  
Junzo NAKAMURA ◽  
Nobuaki SEKI ◽  
Hitoshi SASAKI ◽  
Juichiro SHIBASAKI

Xenobiotica ◽  
2019 ◽  
Vol 50 (4) ◽  
pp. 401-407 ◽  
Author(s):  
Kei Suzuki ◽  
Kazuhiro Taniyama ◽  
Takao Aoyama ◽  
Yoshiaki Watanabe

Sign in / Sign up

Export Citation Format

Share Document