Development and Evaluation of Novel Fast Disintegrating Acetaminophen Tablets

Author(s):  
Anil M Pethe ◽  
A.T. Patil ◽  
D R Telange ◽  
A A Tatode

In this study, attempts were made to design and developed disintegrating drug delivery system, Acetaminophen fast disintegrating tablet (AFDT) by combining super disintegrants and direct compression method. Acetaminophen is widely used as “over the counter” and “common household drug” as analgesic and antipyretic along with poor absorption due to first pass metabolism. So we aimed to use our novel delivery system to achieve rapid absorption in patients like mentally ill, bed ridden and those who do not have easy access to water. The (AFDT) were produced by combining three super disintegrants viz. Croscarmellose, Crospovidone and Sodium starch glycolate in 4% w/w as ratio of (1:1, 1:2, 2:1) using direct compression method. The optimized batch (A3) of tablet were evaluated for post – compression parameters like hardness (4.5 ± 0.75 kg.cm2), friability ((0.76 %), wetting time (42 ± 0.92 sec), water absorption ratio (98.6 %), disintegration time (24.00 ± 0.83 sec.) were found to be acceptable according to standard limits. The in vitro release rate of acetaminophen from (AFDT) was found to be more than that simple formulation in pH (5.8) using USP dissolution test apparatus type-II. These results indicated that, the new (AFDT) formulation system combined advantage of faster release of acetaminophen, which had better effects of rapid oral absorption. Therefore, the AFDT may be used as fast disintegrating delivery system for OTC drug with poor absorption due to first pass metabolism.

Author(s):  
Lakshmi Usha Ayalasomayajula ◽  
M. Kusuma Kumari ◽  
Radha Rani Earle

In the recent days about 75% of the drugs taken orally are does not show the desired therapeutic effect. Oral conventional dosage forms have several disadvantages such as poor bioavailability due to hepatic first pass metabolism and tendency to produce rapid blood level spikes (Both high and low). Thus, rapid drug levels in the plasma leads to a need of high and/or frequent dosing, which can be both uneconomical and inconvenient. To overcome such disadvantages transdermal drug delivery system was developed. TDDS is such a delivery system which has been explored extensively over the last two decades, with therapeutic success. Transdermal drug delivery systems (TDDS) are the drug delivery systems which involves transportation of drug to epidermal and dermal tissues of the skin for local therapeutic action while major fraction of the drug is transported into the systemic blood circulation. Topical administration of therapeutic agents offers vast advantages over conventional oral and invasive methods of drug delivery. Some of the advantages of transdermal drug delivery include limitation of hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady state plasma level concentration of the drug. This study includes a brief overview of TDDS, its advantages over conventional dosage forms, drug delivery routes across human skin, permeation enhancers, and classification, formulation, methods of preparation and evaluation of transdermal patches.


Author(s):  
Harini Amballa ◽  
Navaneetha Kaluva ◽  
Sree Giri Prasad Beri ◽  
Krishna Mohan Chinnala ◽  
Mayuri Konda

Mucoadhesive drug release system is a preferably unidirectional release system where mucosal epithelial exterior is enclosed by the mucus deposit that interacts with the bio-adhesive drug delivery system and swelling time of the buccal dosage form which is amplified by mucin molecules at the location of administration. Eplerenone is an Anti-hypertensive drug that undergoes hepatic first pass metabolism and shows 69% of bioavailability. In order to bypass the hepatic first pass metabolism the drug is designed to be delivered through buccal cavity to avoid the first pass metabolism. Eplerenone buccal tablets were formulated by using direct compression method with different polymers like HPMC K 100M, Carbopol 934P, Carbopol 974P, Xantham Gum, Eudragit L100 and NaCMC in various concentrations and compositions. Incompatibility complications were not observed from the FTIR spectrums. The formulated and prepared buccal solid dosage forms were evaluated for pre-compressions and post- compression parameters such as hardness, weight variation, thickness, friability, surface pH, swelling index, in-vitro dissolution studies, drug content uniformity, mucoadhesion strength and mucoadhesion time. Evaluation results of formulation F12 are proven to be the optimal formulation showing highest mucoadhesion time, mucoadhesion strength and in-vitro drug release for prolonged period of time about 8 hours. Eplerenone is best delivered through buccal drug delivery system to enhance its oral bioavailability and bypass the hepatic first pass metabolism.


2021 ◽  
Vol 16 (3) ◽  
pp. 235-240
Author(s):  
Kapil Kumar ◽  
Gurleen Kaur ◽  
Seema ◽  
Deepak Teotia ◽  
Ikram

Buccal patches are the types of formulations in which the drug is administered through buccal mucosa. these patches are or placed in between the gums and the for the pharmacological response. The main advantage of these patches is there is no first pass metabolism takes place and easily absorb in systemic circulation through themucosa .the main objective of this drug delivery system is to elevate or increase the bioavailability of the drug. the review informs about the steps involve in the preparation of buccal patch and to promote the awareness towards this type of drug delivery system. This article intends to analyze the overall profile of Buccal Patches and scope of future advances.


2014 ◽  
Vol 64 ◽  
pp. 26-36 ◽  
Author(s):  
Sarala Yanamandra ◽  
Natarajan Venkatesan ◽  
Veeran Gowda Kadajji ◽  
Zhijun Wang ◽  
Manish Issar ◽  
...  

Author(s):  
Kumara Swamy Samanthula ◽  
Agaiah Goud Bairi ◽  
Shobha Rani Satla ◽  
Mahendra Kumar CB

Cefixime trihydrate (CT) is a third-generation cephalosporin antibiotic and is used in the management of various infections caused by Gram +ve as well as Gram – ve bacteria. It has a plasma half-life of 3-4 h. It has poor oral bioavailability due to hepatic first pass metabolism. Hence, an attempt was made to develop CT mucoadhesive tablets for buccal delivery to avoid first-pass metabolism and improved oral delivery. CT mucoadhesive tablets developed using HPMC K4M, Na-CMC, guar gum and chitosan as rate controlling polymers and mucoadhesive agent, respectively and compressed by direct compression method. The prepared CT mucoadhesive tablets were evaluated for hardness, weight variation, thickness, friability, drug content uniformity, assay, mucoadhesive strength and in vitro release. From the results, all the evaluated parameters were within the pharmacopoeial limits. The in-vitro dissolution studies indicated that the CTmucoadhesive tablets formulation (F2) showed 99.7±1.4 % of drug release after 8 h and chose as the optimized formulation. The kinetic models suggest that the drug release follows Higuchi’s kinetics and tablets drug release was controlled by a diffusion mechanism.


Author(s):  
RAJNI BALA ◽  
SHAILESH SHARMA ◽  
IKGPTU

Objective: The present study was aimed to formulate fast dissolving tablets (FDTs) of Aprepitant (APT) using natural and synthetic superdisintegrants with the desired onset of action, increased bioavailability by reducing the frequency of dosage and also reduce the first-pass metabolism of the drug. Methods: In this research, the gum isolated from cordia dichotoma was investigated as super disintegrants in fast dissolving tablets (FDTs). The aprepitant tablets were prepared separately using cordia dichotoma (natural), sodium starch glycolate and croscarmellose sodium (synthetic) as superdisintegrants by direct compression method. The tablets were evaluated for various precompression and post-compression parameters. Results: The optimized formulation (APT F3) of cordia dichotoma (8%) showed satisfactory physicochemical properties, minimum disintegration time (34 seconds) and highest dissolution rate (86.52%) in 10 min than the other synthetic superdisintegrants. Also, the pharmacokinetic study of the optimized formulation showed effective results as compared with marketed product of aprepitant. Conclusion: The developed formulation can improve the onset of action as well as improve patient compliance.


2019 ◽  
Vol 69 (3) ◽  
pp. 381-398
Author(s):  
Amira A. Rashad ◽  
Sara Nageeb El-Helaly ◽  
Randa T. Abd El Rehim ◽  
Omaima N. El-Gazayerly

Abstract Reduced bioavailability of azelnidipine is related to its poor aqueous solubility and extensive first-pass metabolism, which hinder its efficacy. These problems were addressed by implementing (1) a liquisol technique for promoting the dissolution rate in a controlled-release manner and (2) a core-in-cup bucco-adhesive drug delivery system as an alternative to the oral route. A 33 factorial design was used to study the effects of polymer type (sodium carboxymethyl cellulose (CMC Na), chitosan, or Carbomer P940) concentration (5, 10 or 15 %) and preparation technique (simple mix, liquisol or wet granulation) on the dissolution and mucoadhesion of core-in-cup azelnidipine buccoadhesive tablets. Tablet micromeritics, swelling index, mucoadhesive strength and in vitro release were characterized. Statistical analyses of these factors show ed significant effects on the studied responses, where F#16 prepared by the liquisol technique and containing 15 % CMC Na was chosen with an overall desirability of 0.953.


2020 ◽  
Vol 8 (6) ◽  
pp. 471-484
Author(s):  
Pamu Sandhya ◽  
Pamu Poornima ◽  
Darna V.R.N. Bhikshapathi

Background: Sorafenib tosylate (SFN) belongs to the BCS class II drug with low solubility and undergoes first-pass metabolism, which leads to reduced bioavailability of 38%. Objective: The present study aimed at developing SFN SNEDDS to improve their solubility and bioavailability. Methods: Preliminary solubility studies were performed to identify oil, surfactant, and co-surfactant ratios. Pseudo tertiary phase diagram was constructed to select the areas of nanoemulsion based on the monophasic region. A total of 15 formulations of SFN SNEDDS were prepared and screened for phase separation and temperature variation using thermodynamic stability studies. These SNEDDS further characterized for % transmission, content of the drug, and in vitro dissolution analysis. The optimized formulation was analyzed for particle size, Z average, entrapment efficiency, and SEM analysis. Results: Based on the pseudo tertiary phase diagram, acrysol EL 135, kolliphor, and transcutol-P as oil, surfactant, and co-surfactant were selected, respectively. All the formulations were stable with no phase separation and maximum % transmittance of 98.92%. The formulation F15 was selected as an optimized one, based on maximum drug content of 99.89%, with 98.94% drug release within 1 hour and it will be stable for 6 months. From in vivo bioavailability studies, the Cmax of optimized SNEDDS (94.12±2.12ng/ml) is higher than pure SFN suspension (15.32±1.46 ng/ml) and the AUC0-∞ of optimized SNEDDS is also increased by 5 times (512.1±8.54 ng.h/ml) than pure drug (98.75±6.45ng.h/ml), which indicates improved bioavailability of the formulation. Conclusion: SFN loaded SNEDDS could potentially be exploited as a delivery system for improving oral bioavailability by minimizing first-pass metabolism and increased solubility. Lay Summary: Renal cell carcinoma accounts for 2% of global cancer diagnoses and deaths, it has more than doubled in incidence in the developed world over the past half-century, and today is the ninth most common neoplasm in the United States. Sorafenib is a protein kinase inhibitor indicated as a treatment for advanced renal cell carcinoma. The present study aimed at developing Sorafenib SNEDDS to improve their solubility and bioavailability. A total of 15 formulations of Sorafenib SNEDDS were prepared and screened for phase separation and temperature variation using thermodynamic stability studies. Sorafenib loaded SNEDDS could potentially be exploited as a delivery system for increased oral bioavailability by 5 times when comparing with pure drug by minimizing first-pass metabolism and increased solubility.


2021 ◽  
Vol 11 (4-S) ◽  
pp. 231-235
Author(s):  
Sabnam Gupta ◽  
Sudip Das ◽  
Abhay Singh ◽  
Suman Ghosh

The buccal region within the mucosal cavity of the mouth provides an alternative route over an oral drug administration for systemic as well as local drug delivery. As the buccal mucosa has an abundant blood supply and is relatively permeable, it can be considered as most accessible and desired location for both local and systemic drug delivery. The buccal method for medication delivery greatly helps in avoiding issues in the gastrointestinal environment, such as increased first-pass metabolism and medication degradation. Bucco-adhesive systems offer varieties of advantages such as convenience in administration and termination of therapy in case of emergency, higher patient compliance, better bioavailability, rapid absorption, etc. This current review highlights the bucco-adhesive drug delivery system, its advantages and limitations, mechanisms and theories of mucoadhesion, different bucco-adhesive dosage forms, and bioadhesive polymers. It also highlights the current status on mucoadhesive drug delivery methods for the buccal cavity or bucco-adhesive systems. Keywords: Bioadhesion, mucoadhesion, bucco-adhesive drug delivery system, oral mucosa, first-pass metabolism, bioadhesive polymers.


Sign in / Sign up

Export Citation Format

Share Document