scholarly journals Tensile Studies on Random Oriented Human Hair Fiber Reinforced Polyester Composites

2018 ◽  
Vol 47 (1) ◽  
pp. 37-44 ◽  
Author(s):  
P. Divakara Rao ◽  
C. Udaya Kiran ◽  
K. Eshwara Prasad

Composite specimens are prepared by impregnating human hair in polyester resin. Randomlyoriented chopped Human hair with varied weight ratios and Fiber lengths are used for the present experimental study. The composites are compression moulded using hand layup technique. An attempt is made to find out the influence of fiber weight ratio and length on the Tensile strength and tensile modulus. Optimum Fiber weight ratio and Fiber length are identified for maximizing the tensile strength and tensile modulus of the Human hair polyester composites. Experiments are carried out as per the standards and results are discussed.Further, Tensile stress and Tensile Modulus of the composite at optimum fiber length are estimated using different theoretical models and are compared with the experimental results.

2014 ◽  
Vol 695 ◽  
pp. 159-162 ◽  
Author(s):  
Januar Parlaungan Siregar ◽  
Tezara Cionita ◽  
Dandi Bachtiar ◽  
Mohd Ruzaimi Mat Rejab

In recent years natural fibres such as sisal, jute, kenaf, pineapple leaf and banana fibres appear to be the outstanding materials which come as the viable and abundant substitute for the expensive and non-renewable synthethic fibre. This paper investigate the effect of fibre length and fibre content on the tensile properties of pineapple leaf fibre (PALF) reinforced unsaturated polyester (UP) composites. PALF as reinforcement agent will be employed with UP to form composite material specimens. The various of fiber length (<0.5, 0.5–1, and 1-2 mm) and fibre content (0, 5, 10 and 15 % by volume) in UP composite have been studied. The fabrication of PALF/UP composites used hand lay-up process, and the specimens for tensile test prepared follow the ASTM D3039. The result obtained from this study show that the 1-2 mm fibre length has higher tensile strength (42 MPa) and tensile modulus (1344 MPa) values compared to fibre length of <0.5 mm (30 MPa and 981 MPa) and 0.5-1 mm (35.40 MPa and 1020 MPa) respectively. Meanwhile, for the effect of various fibre content in study has shown that the increase of fibre content has decreased in tensile strength dan tensile modulus of composites. The increase of fibre content due to poor interfacial bonding and poor wetting of the fibre by unsaturated polyster. The treatment of natural fibre are suggested in order to improve the interfacial adhesion between natural fibre and the unsaturated polyester.


2014 ◽  
Vol 8 ◽  
pp. 7-13 ◽  
Author(s):  
Palla Hari Sankar ◽  
Y.V. Mohana Reddy ◽  
K. Hemachandra Reddy ◽  
M. Ashok Kumar ◽  
A. Ramesh

This paper presents the study of the tensile properties of Sansevieria trifasciata – fiber (here after called STF) reinforced polyester composites. The composite sample was fabricated with five different fiber lengths of STF (2, 4, 6, 8 and 10 mm). The fabrication was made by hand lay-up technique. Mechanical properties were determined using tensile testing. An interact between fiber and matrix was observed from the SEM (scanning electron microscope) micrographs. The study reveals that the tensile strength increased with fiber length without effecting the elongation at break of the composite.


2019 ◽  
Vol 27 (4(136)) ◽  
pp. 88-93
Author(s):  
K.Z.M. Abdul Motaleb ◽  
Md Shariful Islam ◽  
Rimvydas Milašius

Two types of composites:(1) pineapple fabric reinforced polyester resin (Pineapple/PR) and (2) jute fabric reinforced polyester resin (Jute/PR) were prepared and the mechanical properties investigated for various gamma radiation doses ranging from 100-500 krad. Properties like tensile strength, Young’s modulus, elongation-at-break, bending strength, bending modulus and impact strength were increased significantly by 19%, 32%, 45%, 32%, 47% and 20%, respectively, at a dose of 300 krad for Pineapple/PR, and by 47%, 49%, 42%, 45%, 52% and 65%, respectively, at a dose of 200 krad for the Jute/PR composite in comparison to the non-irradiated composite. Gamma radiation improved the mechanical properties, but overdoses of radiation even caused a reduction in them.


1979 ◽  
Vol 35 (1) ◽  
pp. T19-T27 ◽  
Author(s):  
Minoru Miwa ◽  
Tadashi Ohsawa ◽  
Kenji Tahara

2019 ◽  
Vol 25 ◽  
pp. 22-31 ◽  
Author(s):  
Farhana Islam ◽  
M. Naimul Islam ◽  
Shahirin Shahida ◽  
Harun Ar Rashid ◽  
Nanda Karmaker ◽  
...  

Jute fabrics reinforced Unsaturated Polyester Resin (UPR)-based composites were prepared by conventional hand lay-up technique. Different proportions (5 to 50% by weight) of fibre content was used in preparation of the composite. Tensile Strength (TS), Tensile Modulus (TM), Bending Modulus (BM), Bending Strength (BS), Impact Strength (IS) of the fabricated composites were studied. Upon each addition of fiber content in the matrix, mechanical properties of the composites were increased. The Tensile Strength (TS) of the 5% and 50% fiber reinforced composites was 18 MPa and 42 MPa respectively. Scanning Electron Microscopy (SEM) showed interfacial properties of the composites and it was revealed that the bond between fiber and matrix was excellent.


2013 ◽  
Vol 812 ◽  
pp. 231-235 ◽  
Author(s):  
Borhan Nurulaini ◽  
Ahmad Zafir Romli ◽  
Mohd Hanafiah Abidin

This study is to determine the effects of tensile and flexural testing on the C.equisetifolia composite at different loading from 10 % to 50 % weight loading (wt%). The results for all composite samples on tensile strength and tensile modulus decreasing as the weight loadings of C.equisetifolia increases. However, the result from tensile modulus was not significant when the C.equisetifolia weight loadings increase in the composite. In addition, the result obtained from flexural modulus and strength at 20 % of C.equisetifolia weight loading, increased to 3.147GPa and 3.25 MPa respectively, while when C.equisetifolia weight loadings increase the results showed a decrease.


2011 ◽  
Vol 233-235 ◽  
pp. 2595-2599 ◽  
Author(s):  
Xue Ni Zhao ◽  
Bin Zhou ◽  
Wu Yong Wan ◽  
Shan Qi Zeng ◽  
Wei Ren

Formula for glass fiber/microcellular unsaturated polyester composites (GF/MCUP) using supersaturated gas technology was studied by the way of orthogonal experiment. The results showed that these factors affecting average cell size from strongly to weakly were styrene content, accelerant content, glass fiber length, curing agent and glass fiber content, respectively. The factors affecting average cell density from strongly to weakly were accelerant content, styrene content, glass fiber content, curing agent content and glass fiber length, respectively. Curing agent content was the major factor affecting impact strength of GF/MCUP. The factors revealed no obvious difference in affecting tensile strength. Under the optimizing processing condition, the average cell size of GF/MCUP was about 8 μm and the cell density was 1.19×109 cells/cm3. The 153.70 and 255.84 % increase in impact strength were gained over that of GF/UP and UP, respectively. The corresponding 20.24 and 82.51% increase in tensile strength-to-weight ratio were gained over that of GF/UP and UP, respectively.


2020 ◽  
Vol 995 ◽  
pp. 117-122
Author(s):  
Phaneesh Shettigar ◽  
Manjunath Shettar ◽  
Rao U. Sathish ◽  
C.S. Suhas Kowshik ◽  
M.C. Gowrishankar

In this research, the results of different weight percentage of glass fiber (30, 40 & 50), cement (0, 3 & 6) and polyester resin (70, 60 & 50), on the properties of glass fiber-cement-polyester composites are investigated. The specimens are prepared by hand lay-up technique. All the specimens are tested for tensile and flexural strength as per ASTM standards. Results showed that escalation in glass fiber wt.% improved the tensile strength (by 9% at 40 wt.% and 17% at 50 wt.%) and flexural strength (by 10% at 40 wt.% and 16.5% at 50 wt.%). Whereas an increase in cement weight percentage decreases tensile strength and increases flexural strength. The failure of the sample is due to glass fiber pull out and rupture of the matrix, under tensile load.


2014 ◽  
Vol 695 ◽  
pp. 709-712 ◽  
Author(s):  
Mohd Amran ◽  
Raja Izamshah ◽  
Mohd Hadzley ◽  
Mohd Shahir ◽  
Mohd Amri ◽  
...  

The effect of maleated polypropylene (MAPP) as binder on the mechanical properties of kenaf fibre/polypropylene (KF/PP) composites is studied. Ratios between kenaf fibre and PP having 10:90, 30:70 and 50:50 in weight ratio were selected. Further, MAPP having 1, 3 and 5 percent in percentage of weight ratio was mixed in KF/PP composites. Hot press machine was used to produce tensile test samples of KF/PP composites. The mechanical properties that are tensile strength, tensile modulus and elongation at break of KF-PP composites were obtained from tensile test result. It is found that the tensile strength and tensile modulus increase with increasing the kenaf fibre loading and higher percentage of MAPP. Further, the elongation at break for KF/PP composites shows lower result when increasing of kenaf fibre loading. However, when percentage of MAPP added in KF/PP composites increases, the elongation at break increased slightly. Thus, result shows that kenaf fibre/PP composites with binder were better in tensile strength, tensile modulus however the elongation at break shows weak result unless the binder was added.


Sign in / Sign up

Export Citation Format

Share Document