scholarly journals Soret effects due to natural convection in a non-Newtonian fluid flow in porous medium with heat and mass transfer

2014 ◽  
Vol 11 (2) ◽  
pp. 147-156 ◽  
Author(s):  
M.C Raju ◽  
S.V.K Varma

The problem of unsteady MHD free convective, incompressible electrically conducting, non-Newtonian fluid through porous medium bounded by an infinite porous plate in the presence of constant suction has been studied. A magnetic field of uniform strength is assumed to be applied normal to the plate. The equations governing the fluid flow which are highly nonlinear are reduced to linear by using perturbation method and have been solved subject to the relevant boundary conditions. It is noted that the velocity of the fluid is increased as Soret number and suction parameter increase, whereas reverse phenomenon is observed in case of magnetic field strength and sink strength. DOI: http://dx.doi.org/10.3329/jname.v11i2.17563

2010 ◽  
Vol 9 (2) ◽  
pp. 6-20
Author(s):  
N. Ananda Reddy ◽  
M. C. Raju ◽  
S. Vijay Kumar Varma

The problem of unsteady free convective MHD incompressible electrically conducting non-Newtonian fluid through porous medium bounded by on infinite inclined porous plate in the presence of constant suction and absorbing sinks is presented. Uniform magnetic field is applied normal to the plate. The equations governing the fluid flow have been solved using multi-parameter perturbation technique, subject to the relevant boundary conditions. It is noted that the velocity of the fluid and skin friction ore increased as permeability parameter and angle of inclination increases, whereas reverse phenomenon is observed in case of magnetic field strength and sink strength. Velocity and temperature are greater for mercury than that of electrolytic solution. Rate of heat transfer decreases with increase in the sink strength. The results ore discussed through graphs and tables.


2013 ◽  
Vol 17 (4) ◽  
pp. 1035-1047 ◽  
Author(s):  
Abdel-Gamal Rahman

The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal conductivity in a porous medium by the influence of an external transverse magnetic field have been obtained and studied numerically. By using similarity analysis the governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are solved numerically. Numerical results were presented for velocity and temperature profiles for different parameters of the problem as power law parameter, unsteadiness parameter, radiation parameter, magnetic field parameter, porous medium parameter, temperature buoyancy parameter, Prandtl parameter, modified Eckert parameter, Joule heating parameter , heat source/sink parameter and others. A comparison with previously published work has been carried out and the results are found to be in good agreement. Also the effects of the pertinent parameters on the skin friction and the rate of heat transfer are obtained and discussed numerically and illustrated graphically.


2016 ◽  
Vol 21 (3) ◽  
pp. 667-681 ◽  
Author(s):  
K.D. Singh

Abstract An unsteady mixed convection flow of a visco-elastic, incompressible and electrically conducting fluid in a hot vertical channel is analyzed. The vertical channel is filled with a porous medium. The temperature of one of the channel plates is considered to be fluctuating span-wise cosinusoidally, i.e., $T^* \left( {y^* ,z^* ,t^* } \right) = T_1 + \left( {T_2} - {T_ 1} \right)\cos \left( {{{\pi z^* } \over d} - \omega ^* t^* } \right)$ . A magnetic field of uniform strength is applied perpendicular to the planes of the plates. The magnetic Reynolds number is assumed very small so that the induced magnetic field is neglected. It is also assumed that the conducting fluid is gray, absorbing/emitting radiation and non-scattering. Governing equations are solved exactly for the velocity and the temperature fields. The effects of various flow parameters on the velocity, temperature and the skin friction and the Nusselt number in terms of their amplitudes and phase angles are discussed with the help of figures.


2013 ◽  
Vol 18 (4) ◽  
pp. 1025-1037
Author(s):  
M. Guria ◽  
N. Ghara ◽  
R.N. Jana

Abstract An unsteady Couette flow between two parallel plates when upper plates oscillates in its own plane and is subjected to a constant suction and the lower plate to a injection velocity distribution through the porous medium has been analyzed. The approximate solution has been obtained using perturbation technique. It is seen that the primary velocity increases whereas the secondary velocity decreases with an increase in permeability parameter. It is also found that the primary velocity increases with an increase in the Reynolds number as well as the suction parameter. The magnitude of the secondary velocity increases near the stationary plate but decreases near the oscillating plate with an increase in the Reynolds number. Whereas, it increases with an increase in the suction parameter.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


Sign in / Sign up

Export Citation Format

Share Document