scholarly journals Numerical simulation of turbulent boundary layers of surfaces covered with foul release and antifouling coatings

2016 ◽  
Vol 13 (1) ◽  
pp. 17-26
Author(s):  
Sadra Kianejad ◽  
Naznin Ansarifard

In order to compare the frictional resistance of three kinds of ship’s hull coatings (Foul Release, SPC copper, SPC TBT) in the unfouled conditions, the numerical studies have been made. Simulations have been carried out for different Reynolds numbers in the range of 2.85 ×  – 5.5 ×  based on the plate length and flow velocity. Antifouling coatings have a larger mean roughness than Foul Release. The results have indicated that frictional resistance coefficient of Foul Release test plate is lower than SPC copper and SPC TBT test plates. The total resistance obtained by computational fluid dynamics has been compared with the experimental data and good agreement in results has been found which those have shown the ability of CFD modeling in calculating of fluid flow resistance by considering the coating characteristics.

2004 ◽  
Vol 126 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Michael P. Schultz

An experimental study has been made to compare the frictional resistance of several ship hull coatings in the unfouled, fouled, and cleaned conditions. Hydrodynamic tests were completed in a towing tank using a flat plate test fixture towed at a Reynolds number ReL range of 2.8×106-5.5×106 based on the plate length and towing velocity. The results indicate little difference in frictional resistance coefficient CF among the coatings in the unfouled condition. Significant differences were observed after 287 days of marine exposure, with the silicone antifouling coatings showing the largest increases in CF. While several of the surfaces returned to near their unfouled resistance after cleaning, coating damage led to significant increases in CF for other coatings. The roughness function ΔU+ for the unfouled coatings showed reasonable collapse to a Colebrook-type roughness function when the centerline average height k=0.17Ra was used as the roughness length scale. Excellent collapse of the roughness function for the barnacle fouled surfaces was obtained using a new roughness length scale based on the barnacle height and percent coverage.


2002 ◽  
Vol 124 (2) ◽  
pp. 492-499 ◽  
Author(s):  
Michael P. Schultz

An experimental investigation has been carried out to document and relate the frictional resistance and roughness texture of painted surfaces smoothed by sanding. Hydrodynamic tests were carried out in a towing tank using a flat plate test fixture towed at a Reynolds number ReL range of 2.8×106−5.5×106 based on the plate length and freestream velocity. Results indicate an increase in frictional resistance coefficient CF of up to 7.3% for an unsanded, as-sprayed paint surface compared to a sanded, polished surface. Significant increases in CF were also noted on surfaces sanded with sandpaper as fine as 600-grit as compared to the polished surface. The results show that, for the present surfaces, the centerline average height Ra is sufficient to explain a large majority of the variance in the roughness function ΔU+ in this Reynolds number range.


2009 ◽  
Vol 53 (04) ◽  
pp. 179-198 ◽  
Author(s):  
Shanti Bhushan ◽  
Tao Xing ◽  
Pablo Carrica ◽  
Frederick Stern

This study demonstrates the versatility of a two-point, multilayer wall function in computing model-and full-scale ship flows with wall roughness and pressure gradient effects. The wall-function model is validated for smooth flat-plate flows at Reynolds numbers up to 109, and it is applied to the Athena R/V for resistance, propulsion, and seakeeping calculations and to fully appended DTMB 5415 for a maneuvering simulation. Resistance predictions for Athena bare hull with skeg at the model scale compare well with the near-wall turbulence model results and experimental fluid dynamics (EFD) data. For full-scale simulations, frictional resistance coefficient predictions using smooth wall are in good agreement with the International Towing Tank Conference (ITTC) line. Rough-wall simulations show higher frictional and total resistance coefficients, where the former is found to be in good agreement with the ITTC correlation allowance. Self-propelled simulations for the fully appended Athena performed at full scale using rough-wall conditions compare well with full-scale data extrapolated from model-scale measurements using the ITTC ship-model correlation line including a correlation allowance. Full-scale computations are performed for the towed fully appended Athena free to sink and trim and the boundary layer and wake profiles are compared with full-scale EFD data. Rough-wall results are found to be in better agree-ment with the EFD data than the smooth-wall results. Seakeeping calculations are performed for the demonstration purpose at both model-and full-scale. Maneuvering calculation shows slightly more efficient rudder action, lower heading angle overshoots, and lower roll damping for full-scale than shown by the model scale.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


2012 ◽  
Vol 323-325 ◽  
pp. 373-379 ◽  
Author(s):  
B. Rannou ◽  
M. Mollard ◽  
B. Bouchaud ◽  
J. Balmain ◽  
G. Bonnet ◽  
...  

The use of thermal barrier coating systems allows superalloys to withstand higher operating temperatures in aeroengine turbines. Aiming at providing oxidation protection to such substrates, an aluminum-rich layer is deposited to form the α-Al2O3scale over which a ceramic layer (i.e. YSZ layer) is applied to provide thermal insulation. A new approach is now being investigated within the FP7 European project « PARTICOAT », in which a single step process is employed by applying micro-sized aluminum particles. The particles are mixed in a binder and deposited by brushing or spraying on the substrate surface. During a heat treatment, the particles sinter and oxidize to form a top coat composed of hollow con-joint alumina spheres and simultaneously, an Al-rich diffusion zone is formed in the substrate. For a better understanding of the diffusion / growth processes, preliminary tests were carried out on pure nickel and Ni20Cr model alloys prior to further application on commercial superalloys. The effect of the heat treatment on the coating characteristics (number of layers, thickness, composition, homogeneity, etc.) was particularly investigated to emphasize the mechanisms of diffusion governing the growth of the coatings. The establishment of the diffused layers occurred very readily even at intermediate temperatures (650 and 700°C). However, the layers formed did not match perfectly with the thermodynamic modeling because of the quick incorporation of Ni into molten Al at intermediate temperatures (650°C). In contrast, at higher temperatures (700 and 1100°C) the phases predicted by Thermocalc are in good agreement with the observed thickness of the diffused layers. The incorporation of Cr as an alloying element restrained Al ingress by segregation of Cr even at very low temperatures aluminizing temperatures (625°C).


2005 ◽  
Vol 498-499 ◽  
pp. 270-277 ◽  
Author(s):  
Claudio Roberto Duarte ◽  
Valéria V. Murata ◽  
Marcos A.S. Barrozo

Spouted bed systems have emerged as very efficient fluid-particle contactors and find many applications in the chemical and biochemical industry. Some important applications of spouted beds include coal combustion, biochemical reactions, drying of solids, drying of solutions and suspensions, granulation, blending, grinding, and particle coating. An extensive overview can be found in Mathur and Epstein[1]. The pattern of solid and gas flows in a spouted bed was numerically simulated using a CFD modeling technique. The Eulerian-Eulerian multifluid modeling approach was applied to predict gas-solid flow behavior. A commercially available, control-volume-based code FLUENT 6.1 was chosen to carry out the computer simulations. In order to reduce computational times and required system resources, the 2D axisymmetric segregated solver was chosen. The typical flow pattern of the spouted bed was obtained in the present calculation. The simulated velocity and voidage profiles presented a good agreement qualitative and quantitative with the experimental results obtained by He et al. [4].


Author(s):  
Zhong Ren ◽  
Sneha Reddy Vanga ◽  
Nathan Rogers ◽  
Phil Ligrani ◽  
Keith Hollingsworth ◽  
...  

The present study provides new heat transfer data for both the surfaces of the full coverage effusion cooling plate within a double wall cooling test facility. To produce the cooling stream, a cold-side cross-flow supply for the effusion hole array is employed. Also utilized is a unique mainstream mesh heater, which provides transient thermal boundary conditions, after mainstream flow conditions are established. For the effusion cooled surface, presented are spatially-resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficients (measured using infrared thermography). For the coolant side, presented are spatially-resolved distributions of surface Nusselt numbers (measured using liquid crystal thermography). Of interest are the effects of streamwise development, blowing ratio, and Reynolds number. Streamwise hole spacing and spanwise hole spacing (normalized by effusion hole diameter) on the effusion plate are 15 and 4, respectively. Effusion hole diameter is 6.35 mm, effusion hole angle is 25 degrees, and effusion plate thickness is 3 hole diameters. Considered are overall effusion blowing ratios from 2.9 to 7.5, with subsonic, incompressible flow, and constant freestream velocity with streamwise development, for two different mainstream Reynolds numbers. For the hot side (mainstream) of the effusion film cooling test plate, results for two mainflow Reynolds numbers of about 145000 and 96000 show that the adiabatic cooling effectiveness is generally higher for the lower Reynolds number for a particular streamwise location and blowing ratio. The heat transfer coefficient is generally higher for the low Reynolds number flow. This is due to altered supply passage flow behavior, which causes a reduction in coolant lift-off of the film from the surface as coolant momentum, relative to mainstream momentum, decreases. For the coolant side of the effusion test plate, Nusselt numbers generally increase with blowing ratio, when compared at a particular streamwise location and mainflow Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document