scholarly journals Bianchi Type-VI0 Cosmological Model with Special Form of Scale Factor in Sen-Dunn Theory of Gravitation

2021 ◽  
Vol 13 (1) ◽  
pp. 137-143
Author(s):  
D. Basumatay ◽  
M. Dewri

A Bianchi Type-VI0 cosmological model with a special form of scale factor is studied. Einstein field equations in Sen-Dunn theory are obtained and solved for exact solutions. This solution gives a scenario of the dark energy model which tends to a ɅCDM model. The physical and geometrical properties are also obtained and analyzed with the present day observations.

2016 ◽  
Vol 94 (10) ◽  
pp. 1040-1044 ◽  
Author(s):  
V.U.M. Rao ◽  
U.Y. Divya Prasanthi

In this paper, we solve Brans–Dicke (BD) theory (Phys. Rev. D, 24, 925) field equations for anisotropic Bianchi type VI0 space–time and discuss evolution of the expanding Universe. Here, we consider pressureless fluid and isotropic generalized ghost pilgrim dark energy as the source of matter and dark energy, respectively. To get the determinate solution of the field equations we have used (i) scalar expansion proportional to the shear scalar and (ii) scalar field (in BD theory) proportional to average scale factor of the model. Some physical and geometrical properties of the model are also discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Daba Meshesha Gusu

The finding article presents Bianchi type- I universe in the presence of bulk viscous and DE fluid nature of a cosmological model. The solutions of field equations were obtained by assuming hybrid expansion law. The physical significance of the obtained findings illustrates the dominance of bulk viscosity in early and dominance of dark energy fluid emergences in late. This leads to indicate the presence of bulk viscosity nature more effective in early time rather than late times, and also, it shows the dominance of dark energy in late times which grants the current observational result of the universe. Certain physical and geometrical properties of the model are also discussed.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050133
Author(s):  
Kangujam Priyokumar Singh ◽  
Mahbubur Rahman Mollah ◽  
Rajshekhar Roy Baruah ◽  
Meher Daimary

Here, we have investigated the interaction of Bianchi type-I anisotropic cloud string cosmological model universe with electromagnetic field in the context of general relativity. In this paper, the energy-momentum tensor is assumed to be the sum of the rest energy density and string tension density with an electromagnetic field. To obtain exact solution of Einstein’s field equations, we take the average scale factor as an integrating function of time. Also, the dynamics and significance of various physical parameters of model are discussed.


2013 ◽  
Vol 04 (08) ◽  
pp. 1037-1040 ◽  
Author(s):  
Kishor Shankarrao Adhav ◽  
Rajesh Purushottam Wankhade ◽  
Abhijit Shankarrao Bansod

2018 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Rajesh Wankhade ◽  
A.S. Bansod

In this paper, LRS Bianchi type-I space-time is considered in the presence of perfect fluid source in the frame work of  gravity (Harko et al. in Phys.Rev. D 84:024020, 2011) where is an arbitrary function of Ricci scalar  and trace of the energy momentum tensor . The Einstein’s field equations have been solved by taking into account the special form of deceleration parameter (Singha A., Debnath U.: Int.J. Theor. Phys.48, 2009). We observe that in f (R, T) gravity, an extra acceleration is always present due to coupling between matter and geometry. The geometrical and physical aspect of the model is also studied.


2014 ◽  
Vol 11 (05) ◽  
pp. 1450043 ◽  
Author(s):  
Rajesh Kumar ◽  
S. K. Srivastava

In General Relativity, the electric (Eαβ) and magnetic (Hαβ) parts of Weyl tensor are the gravitational quantities that play an analogous role to the electric and magnetic fields in classical electromagnetism. The present study deals with Bianchi type VI0 cosmological model with purely magnetic (PM) and purely electric (PE) space time. Conditions of PM (PE) solutions satisfy Eαβ = 0, Hαβ ≠ 0 (Hαβ = 0, Eαβ≠ 0). We present a new class of cosmological model with PM and PE solutions when the source of gravitation is perfectly fluid. Some physical and geometrical properties of the models are also discussed.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 403
Author(s):  
Yihu Feng ◽  
Lei Hou

In this current study, we explore the modified homogeneous cosmological model in the background of LRS Bianchi type-I space–time. For this purpose, we employ the Homotopy Perturbation Method (HPM). HPM is an analytical-based method. Further, we calculated the main field equations of the cosmological model LRS Bianchi type-I space–time. Furthermore, we discuss the necessary calculations of HPM. Therefore, we investigate the analytical solution of our problem by adopting HPM. In this response, we discuss five different values of parameter n. We also give a brief discussion about solutions. The main purpose of this study is to apply the application of HPM in the cosmological field.


2020 ◽  
Vol 17 (12) ◽  
pp. 2050187
Author(s):  
R. K. Tiwari ◽  
D. Sofuoğlu ◽  
V. K. Dubey

In this work, LRS Bianchi type-I cosmological model with perfect fluid source in [Formula: see text] gravity theory, where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of the stress energy-momentum tensor, has been studied in order to investigate early time deceleration and late time acceleration of the universe. By proposing a new special form of time-varying deceleration parameter in terms of Hubble parameter, the exact solution of the field equations has been obtained. The physical and geometric quantities of the model have been derived and their evolution has been discussed. Our model has an initial singularity and initially exhibits decelerating expansion and transits to accelerating expansion phase at last eras. The nature of the matter source of the model is consistent with the standard model in frame of the structure formation.


Sign in / Sign up

Export Citation Format

Share Document