Phase transition of LRS Bianchi type-I cosmological model in f(R,T) gravity

2020 ◽  
Vol 17 (12) ◽  
pp. 2050187
Author(s):  
R. K. Tiwari ◽  
D. Sofuoğlu ◽  
V. K. Dubey

In this work, LRS Bianchi type-I cosmological model with perfect fluid source in [Formula: see text] gravity theory, where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of the stress energy-momentum tensor, has been studied in order to investigate early time deceleration and late time acceleration of the universe. By proposing a new special form of time-varying deceleration parameter in terms of Hubble parameter, the exact solution of the field equations has been obtained. The physical and geometric quantities of the model have been derived and their evolution has been discussed. Our model has an initial singularity and initially exhibits decelerating expansion and transits to accelerating expansion phase at last eras. The nature of the matter source of the model is consistent with the standard model in frame of the structure formation.

2020 ◽  
Vol 17 (09) ◽  
pp. 2050133
Author(s):  
Kangujam Priyokumar Singh ◽  
Mahbubur Rahman Mollah ◽  
Rajshekhar Roy Baruah ◽  
Meher Daimary

Here, we have investigated the interaction of Bianchi type-I anisotropic cloud string cosmological model universe with electromagnetic field in the context of general relativity. In this paper, the energy-momentum tensor is assumed to be the sum of the rest energy density and string tension density with an electromagnetic field. To obtain exact solution of Einstein’s field equations, we take the average scale factor as an integrating function of time. Also, the dynamics and significance of various physical parameters of model are discussed.


2018 ◽  
Vol 15 (10) ◽  
pp. 1850168 ◽  
Author(s):  
Rashid Zia ◽  
Dinesh Chandra Maurya ◽  
Anirudh Pradhan

In this paper, spatially homogeneous and anisotropic Bianchi type-[Formula: see text] dark energy (DE) cosmological transit models with string fluid source in [Formula: see text] gravity [T. Harko et al., Phys. Rev. D 84 (2011) 024020], where [Formula: see text] is the Ricci scalar and [Formula: see text] the trace of the stress energy–momentum tensor, have been studied in the context of early time decelerating and late-time accelerating expansion of the Universe as suggested by the recent observations. The exact solutions of the field equations are obtained first by using generalized hybrid expansion law (HEL) [Formula: see text] which yields a time-dependent deceleration parameter [Formula: see text] and second by considering the metric coefficient [Formula: see text]. By using recent constraints from supernovae type-Ia union data [Cunha, arXiv:0811.2379[astro-ph]], we obtain [Formula: see text] and [Formula: see text] for transit model [Formula: see text]. The Universe has an initial singularity and is anisotropic closed and it tends to be flat at the late time, i.e. our Universe is in accelerating expansion. Our model shows a phase transition property from decelerating to accelerating. It is remarkable to mention here that our Universe is homogeneous and anisotropic in the early phase whereas it becomes homogeneous and isotropic for [Formula: see text]. We have also discussed the stability of the background solution with respect to perturbations of the metric along with the properties of future singularities in the Universe dominated by DE including the phantom-type fluid. Various physical and dynamical parameters are also calculated and investigated in terms of time and redshift both.


2021 ◽  
Vol 10 (5) ◽  
pp. 2515-2525
Author(s):  
N.P. Gaikwad ◽  
P.V. Lepse ◽  
B.K. Bishi ◽  
N.K. Ashtankar

We have deduced that bulk viscous Bianchi type I barotropic fluid cosmological model with varying $\Lambda$ and functional relation on hubble parameter by solving the field equations bimetric theory of gravitation. It is observed that our model has exponentially accelerating expansion at late time starting with decelerating expansion which agreed the observation of Perlmutter (1998), Knop (2003), Tegmark (2004) and Spergel (2006). In the beginning, our model has more than three spatial-dimensions then it switched over to three-dimensional spatial geometry at late epoch of time and it is agreed with Borkar et al. (2013). Other geometrical and physical behavior of the model have been studied.


Author(s):  
M. Koussour ◽  
M. Bennai

In this paper, we present a spatially homogeneous and anisotropic Bianchi type-I cosmological model with a viscous bulk fluid in [Formula: see text] gravity where [Formula: see text] and [Formula: see text] are the Ricci scalar and trace of the energy-momentum tensor, respectively. The field equations are solved explicitly using the hybrid law of the scale factor, which is related to the average Hubble parameter and gives a time-varying deceleration parameter (DP). We found the deceleration parameter describing two phases in the universe, the early deceleration phase [Formula: see text] and the current acceleration phase [Formula: see text]. We have calculated some physical and geometric properties and their graphs, whether in terms of time or redshift. Note that for our model, the bulk viscous pressure [Formula: see text] is negative and the energy density [Formula: see text] is positive. The energy conditions and the [Formula: see text] analysis for our spatially homogeneous and anisotropic Bianchi type-I model are also discussed.


2018 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Rajesh Wankhade ◽  
A.S. Bansod

In this paper, LRS Bianchi type-I space-time is considered in the presence of perfect fluid source in the frame work of  gravity (Harko et al. in Phys.Rev. D 84:024020, 2011) where is an arbitrary function of Ricci scalar  and trace of the energy momentum tensor . The Einstein’s field equations have been solved by taking into account the special form of deceleration parameter (Singha A., Debnath U.: Int.J. Theor. Phys.48, 2009). We observe that in f (R, T) gravity, an extra acceleration is always present due to coupling between matter and geometry. The geometrical and physical aspect of the model is also studied.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 403
Author(s):  
Yihu Feng ◽  
Lei Hou

In this current study, we explore the modified homogeneous cosmological model in the background of LRS Bianchi type-I space–time. For this purpose, we employ the Homotopy Perturbation Method (HPM). HPM is an analytical-based method. Further, we calculated the main field equations of the cosmological model LRS Bianchi type-I space–time. Furthermore, we discuss the necessary calculations of HPM. Therefore, we investigate the analytical solution of our problem by adopting HPM. In this response, we discuss five different values of parameter n. We also give a brief discussion about solutions. The main purpose of this study is to apply the application of HPM in the cosmological field.


Author(s):  
Kalyani Desikan

A study of Bianchi Type I cosmological model is undertaken in the framework of creation of particles. To accommodate the creation of new particles, the universe is regarded as an Open thermodynamical system. The energy conservation equation is modified with the incorporation of a creation pressure in the energy momentum tensor. Exact solutions of the field equations are obtained (i) for a particular choice of the particle creation function and (ii) by considering the deceleration parameter to be constant. In the first model the behavior of the solution at late times is investigated. The physical aspects of the model have also been discussed. In the case of the second model we have restricted our analysis to the power law behaviour for the average scale factor. This leads to a particular form for the particle creation function. The behavior of the solution is investigated and the physical aspects of the model have also been discussed for the matter dominated era.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Daba Meshesha Gusu

The finding article presents Bianchi type- I universe in the presence of bulk viscous and DE fluid nature of a cosmological model. The solutions of field equations were obtained by assuming hybrid expansion law. The physical significance of the obtained findings illustrates the dominance of bulk viscosity in early and dominance of dark energy fluid emergences in late. This leads to indicate the presence of bulk viscosity nature more effective in early time rather than late times, and also, it shows the dominance of dark energy in late times which grants the current observational result of the universe. Certain physical and geometrical properties of the model are also discussed.


2020 ◽  
Vol 17 (10) ◽  
pp. 2030003
Author(s):  
Rishi Kumar Tiwari ◽  
Değer Sofuoğlu

In this paper, we have proposed a new form for the varying deceleration parameter that is a generalization of the form of Ö. Akarsu and T. Dereli [Cosmological models with linearly varying deceleration parameter, Int. J. Theor. Phys. 51(2012) 612]. LRS Bianchi type-I cosmological model filled with a perfect fluid source in [Formula: see text] gravity theory, where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of the stress energy–momentum tensor, has been studied in order to investigate early time deceleration and late time acceleration of the universe by using this new form of time-varying deceleration parameter. The time evolution of physical and dynamical parameters have been analyzed and shown by graphs. Moreover, the deceleration parameter has been considered in terms of redshift. It has been shown that the model starts with a big bang and ends with a big rip. It is filled by a quintessence like fluid at the early time and by a phantom like fluid at the late time.


2016 ◽  
Vol 94 (12) ◽  
pp. 1289-1296 ◽  
Author(s):  
M. Zubair ◽  
Syed M. Ali Hassan ◽  
G. Abbas

In this paper, our attention is to reconstruct an appropriate model for Bianchi type I and Bianchi V space–times in f(R, T) gravity with the help of special law of deceleration parameter in connection to f(R, T) gravity (where R is the Ricci scalar and T is the trace of energy–momentum tensor). We solve the modified Einstein field equations for anisotropic and homogeneous Bianchi type V space–time. The solution of field equations facilitates finding out the physical as well as kinematical quantities. We explore the behavior of null energy condition, energy density, and deceleration parameter to present cosmic picture.


Sign in / Sign up

Export Citation Format

Share Document