scholarly journals Aquifer Geometry and Water Quality in Relation to Occurrence and Distribution of Peat in Baghia-Chanda Beel, Bangladesh

2016 ◽  
Vol 8 (3) ◽  
pp. 355-370
Author(s):  
F. Ferdous ◽  
M. R. Rafiq ◽  
M. I. Mahmud

Baghia-Chanda Beel, largest peat basin in Madaripur and Gopalganj (Bangladesh) districts occupies thick deposits of peat. Study focuses on the aquifer geometry and geochemical evaluation of groundwater in relation to occurrence and distribution of peat. Landuse map is generated to show the surface distribution of peat. Thick peat and clay layer respectively, with an average thickness of 7 ft, has been observed throughout the study area. Principal productive aquifer about 40 ft thick, is found at depth between 35 to 145 ft below ground surface. According to pH and EC values, groundwater is mildly acidic to slightly alkaline and fresh to brackish. High bicarbonate concentration which is more likely to be attributed from the oxidative degradation of peat is found at shallow aquifer below peat. Elevated sodium (Na+) and chloride (Cl-) concentrations in deep aquifer are due to the trapping of ancient sea water in the subsurface during Quaternary period. Although  deep aquifer is extensively low in arsenic, 68% and 44% shallow groundwater samples are arsenic (As) contaminated according to WHO, 2011 and Bangladesh Drinking Water Standard (DoE, 1997) limit respectively. Assessment of Water Quality Indexes (WQI>100) suggests that water from deep aquifer is more suitable for drinking purposes.

2018 ◽  
Vol 42 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Shahpara Sheikh Dola ◽  
Khairul Bahsar ◽  
Mazeda Islam ◽  
Md Mizanur Rahman Sarker

Attempt has been made to find the relationship between the basin groundwater flow and the current water chemistry of south-western part of Bangladesh considering their lithological distribution and aquifer condition. The correlation of water chemistry and basin groundwater flow is depicted in the conceptual model. The water-types of shallow groundwater are predominantly Mg-Na-HCO3 and Ca- Mg-Na-HCO3 type. In the deep aquifer of upper delta plain is predominately Na-Cl, Ca-HCO3 and Mg- HCO3 type. In the lower delta plain Na-Cl type of water mainly occurs in the shallow aquifer and occasionally Ca-HCO3, Ca-Mg-Na-HCO3 and Mg-HCO3 type may also occur in shallow aquifer of the eastern part of lower delta plain which could have originated from the recent recharge of rain water. Na- Cl type water is also found in the deep aquifer of lower delta plain. The origin of Na-Cl type water in the deep aquifer of lower delta part might be connate water or present day sea water intrusion. Fresh water occurring in the deep aquifer in the lower delta area is mostly of Mg-Ca-HCO3 and Na-HClO3 types. This type of water originate from intermediate or deep basin flow from the northern part of Bangladesh. The probable source of deep groundwater is Holocene marine transgression (Khan et al. 2000) occurred in 3000–7000 cal years BP and the deep groundwater of Upper Delta plain and Lower Delta plain is clearly influenced by deep basin flow coming from north part of BangladeshJournal of Bangladesh Academy of Sciences, Vol. 42, No. 1, 41-54, 2018


2011 ◽  
Vol 42 ◽  
pp. 107-116
Author(s):  
A. S.M. Woobaidullah ◽  
Mohammad Zohir Uddin

The study area includes Bagerhat Pouroshava and its surroundings under Bagerhat Sadar Upazila covering an area of 7.53 sq. km with a population of about 50,000. Bagerhat is a coastal district and the subsurface geology is complicated. As in other areas of the coastal belt the quality of ground water in the area is also variable. For ground water development in the study area the shallow aquifer is not suitable as the water is mostly saline to brackish except some isolated fresh water pockets of limited yielding capacity. The deep aquifer is also not very homogeneous in water quality. In the northwestern part it bears fresh water but water quality deteriorates south-southeast with higher depth of occurrence. A comprehensive study is carried out to demarcate the aquifers and to judge the water quality to find the suitable location of the deep tube wells in Bagerhat Pouroshava area. Fifteen geoelectric soundings have been executed in the study area using Schlumberger configuration with maximum spreading of 1200 m. Based on the vertical electrical sounding interpretation results the subsurface sequence is divided into following geoelectric units: The top unit has resistivity less than 5.0 Ωm with a thickness of 1.5 to 20 m and represents the top clay­ silty/sandy clay layer. The second geoelectric unit represents a very fine to  medium  sand  with  thin  clay  lenses  and resistivity varying from 5.0 Ωm  to more than  100.0 Ωm  with a  thickness  of  16 to  135  m. The resistivity of the following unit ranges from l.40 Ωm to 4.8 Ωm and thickness varies from 100 m to more than 300 m. The deepest geoelectric unit shows resistivity from 8.0 Ωm to 18.0 Ωm and represents the deep aquifer. The depth to the aquifer varies from 235 m to 355 m. The most suitable site for groundwater development from the deep aquifer is in the vicinity of East Saira of Shatgambuj union.


2004 ◽  
Vol 30 ◽  
Author(s):  
Dinesh C. Devkota ◽  
Kunio Watanabe ◽  
Vishnu Dangol

The Gokarna landfill site (GLS) was in operation between 1986 and 1996. At present, there is a high risk of shallow aquifer contamination owing to the absence of a barrier layer and a high rate of leachate in now from the landfill site. About 20 m thick sandy bed is transmitting pollutants to the shallow aquifer. The water quality analysis of shallow wells, dug wells and springs around the GLS carried out between November 2003 and March 2004 revealed that they are polluted by the leachate. The heavy metal concentration, chlorides, iron as well as BOD and COD values depicted their increasing trend. Likewise, the microbial contamination was also high, and the water was unsuitable for domestic use. However, there is a low probability of contaminating the deep aquifer owing to the presence of impermeable layers of silt and clay above it. On the other hand, the amount of pollutants in the leachate has decreased significantly in recent years, especially after 1996.


Author(s):  
Soumaya Aouiti ◽  
Fadoua Hamzaoui Azaza ◽  
Fetheddine El Melki ◽  
Monji Hamdi ◽  
Fulvio Celico ◽  
...  

Abstract The Hajeb Layoun-Jelma basin, located in the central Tunisia, is the principal source of water supply for Sidi Bouzid and Sfax region. The over-abstraction from this groundwater, since 1970, and the intensive agriculture activities led to the degradation of the water quantity and quality. The quality evaluation for this groundwater is very important tool for sustainable development and decision for water management. A total of 28 groundwater samples, from shallow, springs, and deep aquifers, were collected, storage and analyzed to evaluate its quality suitability for domestic and agriculture purposes using geographic information system and geochemical methods. For the both aquifers, the abundance of cations: Na > Mg > Ca > K, and of anions in the order: Cl > HCO3 > SO4. The dominant hydrochemical facies, for the shallow aquifer and springs, are Na-Cl and Ca-Mg-Cl; for the deep aquifer, the geochemical facies are Na-Cl, Ca-Mg-Cl, and Ca-Cl. The comparison of the major parameters and the chemical data with the World Health Organization standards and the national standards indicate that this groundwater is suitable for drinking, except in some samples, with high salinity concentrations. The water quality was assessed, for drinking uses, using “water quality index,” “entropy,” and “improved water quality index.” The results mentioned that the improved water quality index is the best method which indicated that the poor water quality coincide with the Na-Cl water type. The entropy method and the water quality index present the optimistic methods. The irrigation suitability assessment was made using various parameters (SAR, TH, % Na, PI, MH, KR, EC). The results revealed that the majority of samples in Hajeb Layoun-Jelma basin are not appropriate for irrigation uses.


2015 ◽  
Vol 8 (1) ◽  
pp. 85-89
Author(s):  
F Zannat ◽  
MA Ali ◽  
MA Sattar

A study was conducted to evaluate the water quality parameters of pond water at Mymensingh Urban region. The water samples were collected from 30 ponds located at Mymensingh Urban Region during August to October 2010. The chemical analyses of water samples included pH, EC, Na, K, Ca, S, Mn and As were done by standard methods. The chemical properties in pond water were found pH 6.68 to 7.14, EC 227 to 700 ?Scm-1, Na 15.57 to 36.00 ppm, K 3.83 to 16.16 ppm, Ca 2.01 to 7.29 ppm, S 1.61 to 4.67 ppm, Mn 0.33 to 0.684 ppm and As 0.0011 to 0.0059 ppm. The pH values of water samples revealed that water samples were acidic to slightly alkaline in nature. The EC value revealed that water samples were medium salinity except one sample and also good for irrigation. According to drinking water standard Mn toxicity was detected in pond water. Considering Na, Ca and S ions pond water was safe for irrigation and aquaculture. In case of K ion, all the samples were suitable for irrigation but unsuitable for aquaculture.J. Environ. Sci. & Natural Resources, 8(1): 85-89 2015


Author(s):  
Keizo Negi ◽  
Keizo Negi ◽  
Takuya Ishikawa ◽  
Takuya Ishikawa ◽  
Kenichiro Iba ◽  
...  

Japan experienced serious water pollution during the period of high economic growth in 1960s. It was also the period that we had such damages to human health, fishery and living conditions due to red tide as much of chemicals, organic materials and the like flowing into the seas along the growing population and industries in the coastal areas. Notable in those days was the issues of environment conservation in the enclosed coastal seas where pollutants were prone to accumulate inside due to low level of water circulation, resulting in the issues including red tide and oxygen-deficient water mass. In responding to these issues, we implemented countermeasures like effluent control with the Water Pollution Control Law and improvement/expansion of sewage facilities. In the extensive enclosed coastal seas of Tokyo Bay, Ise Bay and the Seto Inland Sea, the three areas of high concentration of population, we implemented water quality total reduction in seven terms from 1979, reducing the total quantities of pollutant load of COD, TN and TP. Sea water quality hence has been on an improvement trend as a whole along the steady reduction of pollutants from the land. We however recognize that there are differences in improvement by sea area such as red tide and oxygen-deficient water mass continue to occur in some areas. Meanwhile, it has been pointed out that bio-diversity and bio-productivity should be secured through conservation/creation of tidal flats and seaweed beds in the view point of “Bountiful Sea” To work at these challenges, through the studies depending on the circumstances of the water environment in the enclosed coastal seas, we composed “The Policy of Desirable State of 8th TPLCS” in 2015. We have also added the sediment DO into the water quality standard related to the life-environmental items in view of the preservation of aquatic creatures in the enclosed water areas. Important from now on, along the Policy, is to proceed with necessary measures to improve water quality with good considerations of differences by area in the view point of “Beautiful and bountiful Sea”.


2002 ◽  
Vol 6 (5) ◽  
pp. 797-817 ◽  
Author(s):  
C. Neal ◽  
P. Shand

Abstract. A survey of surface, spring and borehole waters associated with the ophiolite rocks of Cyprus shows five broad water types (1) Mg-HCO3, (2) Na-SO4-Cl-HCO3, (3) Na-Ca-Cl-SO4-OH-CO3, (4) Na-Cl-SO4 and (5) Ca-SO4. The waters represent a progression in chemical reactivity from surface waters that evolve within a groundwater setting due to hydrolysis of the basic/ultrabasic rock as modified by CO2-weathering. An increase in salinity is also observed which is due to mixing with a saline end-member (modified sea-water) and dissolution of gypsum/anhydrite. In some cases, the waters have pH values greater than 11. Such high values are associated with low temperature serpentinisation reactions. The system is a net sink for CO2. This feature is related not only to the hydrolysis of the primary minerals in the rock, but also to CaCO3 or Ca-Mg-CO3 solubility controls. Under hyperalkaline conditions, virtually all the carbon dioxide is lost from the water due to the sufficiently high calcium levels and carbonate buffering is then insignificant. Calcium sulphate solubility controls may also be operative when calcium and sulphate concentrations are particularly high. Keywords: Cyprus, Troodos, ophiolite, serpentinisation, spring, stream, water quality, bromide, iodine, boron, trace elements, hyperalkaline.


1996 ◽  
Vol 34 (12) ◽  
pp. 33-40 ◽  
Author(s):  
Y. Hosoi ◽  
Y. Kido ◽  
H. Nagira ◽  
H. Yoshida ◽  
Y. Bouda

The inflow of pollutant load from urban areas and the stagnation of water due to sea water intrusion cause the deterioration of river water quality in tidal zone. In order to improve water quality, various measures such as the reduction of pollutant load by sewage systems, discharge control from sewage treatment plants considering river flow, nutrient removal by aquatic plants, and the dredging of bottom sediments have been examined. The choice of these measures depends on the situation of the river environment and finances. In this study, a field survey was carried out in a typical urban river basin, first. Secondly, on the basis of this survey, a mathematical model was formed to simulate flow and water quality. Several purification alternatives designed for the investigated river basin were comparatively evaluated from the viewpoint of the effect of water quality improvement and their cost. Finally, they were prioritized. Through this case study, a planning process of river water quality management was shown.


Sign in / Sign up

Export Citation Format

Share Document